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ABSTRACT

4

A numerical method for solving the electrochemical
transport equations subject to an arbitrary set of charge-
transfer boundary conditions is presented. The method is
based on a two-dimensional time-dependent formulation of
the equat.ions derived from dilute solution theory. It is
applied to a stuvdy of corrosion and trancport procecses
in crack-like regiors. The results show that the average
species fluxes normal to the metal-electrolyte interface,
the crack length, and the crack aspect ratio are the most
important factors affecting the electrolyte composition.
Other factors, such as the crack snape, the form of the
boundary conditions, and the transport mode, also affect

the composition; but, these factors are of secondary im-
portance.(_

—~—

[ a N el comoul G




-iV=—

TABLE_OF CONTENTS
Section Page
ACKNOWLEDGMENTS ii
ABSTRACT iii
I. INTRODUCTION 1
II. TRANSPCRT IN ELECTROLYTIC SOLUTIONS 5
III. METHODS FOR SOLVING THE TRANSFORT EQUATIONS 41
IV. COMPUTER PROGRAM DEVELOPED FOR THIS STUDY 47
‘ V. RESULTS 58
| VI. DISCUSSION 90
‘ VII. CONCLUDING REMARKS | 132
i REFERENCES 142
APPENDIX A 145
k APPENDIX B 149
, APPENDIX C 153 ;
| APPENDIX D 160 |

l FIGURES 164




. ]

Sl Y RN ST TN DA SR Xt T PR P FOTRNERILA X 0, S ST Iy w0 0 bt e e e [P

{ -

1 ,
| I. INTRODUCTION

The transport of ions in electrolytic solutions p.ays
an important role in every electrochemical process. dJust
how important is determined by scveral factors, but elec-
trode geometry is the primary one. When the geometry is
simple, as in the electroplating of continuous steel strip,
! ion transport is important only at high current densities.
When the electrode geometry is more complex, as in the plat-

{j ing of holts and nuts and baby shoes, the distribution of
: the plating current is strongly affected by the shape of the
H part, and transport in the bulk electrolyte is important
even at low current densities. For decorative or ornamentsl
L} rlating, the uniformity of the current distribution may be
unimportant; but for precision parts plaied to obtain spe-
{ cific engineering properties, control of the plating thick-
L ness is necessary to control both product quality and pro-

duction costs.
| %j In this work we are concerned with ion transport as it ;
' affects the electrochemical corrosion of metals. The geom~
n etry considered is a surface discontinuity such as a pit,

crack, or crevice on an otherwise smooth electrode surface.
! The importance of this geometry in metal corrosion may be
j seen by inspection of any bridge in Pittsburgh. The attack
is relatively mild and fairiy uniform along the expanse of
the main structural members, and concentrated around the
joints, brackets, and cover plates. The attack may be par-
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e ticularly severe around bolts and rivets. In general, any
point where two parts join, forming a crack or crevice, is a
[} point of accelerated corrosive attack.

The rate of attack in a pit or crevice is often large
Ll and may be difficult to control. The overall corrosion cur-
rent typically increases by more than an order of magnitude
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at the onset of pitting corrosion [1].* Depending on pit
size and distribution, the current density in the pite them~
selves may increase by mcre than two orders of magnitude.
Crevice corrosion may be associated with equally large cur-
rents, This is a major nuisance in polarization experiments,
gince specimens must be mounted with extreme care to control
such corrogion and obtain unifcrm current densities [2].

Why surface discontinuities such as cracks increase the
corrosion rate is poorly understood. In part, this is due
to not knowing the electrolyte composition in such a region.
Sampling tne electrclyte in a crack poses some difficult ex-
verimental problems, so most of the composition estimates
have been based on indirect observations. The work reported
by B. F. Brows, C. T. Pujii and B. P. Dahlberg [3] is a
notable excepticn. By the rapid freezing of specimens, they
obtained samples of the electrolyte in propagating stress
corrosion cracks tested in neutral salt solutions. They
found the pH to be substantially less than that of the bulk
electrelyte for all of the metals tested.

wile the rapid freezing technique is promising, the
small volume to he sampled coustitutes a formidable ocbstacle
to the oxperimerntal study of solution chemistry in crack-like
regions. Size imposes no restrictions, however, on a theo-
retical study of such problems. There are well-developed
theories describing both icn transport and electrochemical
reaction rates. The theories have been successfully applied
ir 2 variely ¢f wlectrochemical transport problems (4] and

in the kiunetic aralysis of many charge-transfer reactions [5].

These fects suggest that the theory might be successfully
applied to th: study of sclution chemistry in crack-like
regions.

* . I3
Nuabers in brackets designate References.

i
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The theoretical study of corrosion and transyort in
crack-like regions has received little previous attertion.
J. @. Hines [6] derived a formula for the steady-state
rotential drop in a wedge-shaped crack assuming constant
electrolyte resistivity and negligible transport by diffu-
sion., Somewhat mor. sophisticated analyses have been pre-~
sented by D. A. Vermilyea and C. S. Tedmin, Jr. [7] and by
W. D. France, Jr. and N. D. Greene, Jr. [8]. However, hoth
of these analyses are based orn highly simplified mcdels of
electrolyte behevior.

T. R. Beck [9, 10] has presentcd a model of the elec-
trochemistry of stress corrosion craching in titanium alloys.
Beck's 'MKT' mcdel is the most ccmprehensive theoretical
analysis published to date. The crack is trested as a one-
dimensional continuum, and the syster is assumed to be at
steady state. Convective transport is neglected. The elec-
trolyte contains three ions, two singly-charged salt ions
and the hydrogen ion. The reactions at the metal-eslectro-
lyte interface zre based on those observed experimentally.
The transport equetions are solved rumerically using as
additional boundary data experimentally observed values of
current density and potenrntial.

R. C. Alkire, E. A. Grens II, and C. W. Tobias [11]
recently presented an analysis which is potentially wmore
powerful than the method used by Beck. Although the method
was developed to study porous electrodes, it is directly
applicable to a pit-like region and with simple modification
may be applied to a crack-like region. like Beck's, theirs
is a one-diwensional, quasi-steady state analysis. In their
formulation, however, there is no irtrinsic limitation to
the number of ions and no boundary data nther than reaction
kinetice are required. The results presented to date are
fragmentary and the work is continuing.

A1l of the studies above are based on a simplified
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formulation of the transport equations, but they have been
extremely useful in helping to understand corrosion in
crack-like regions. In particular, the model developed by
Beck has been a powerful tool in developing an understanding
of the role of electrochemistry in stress corrosion cracking.

The successful application of electrochemical transport
theory to the study of electrochemical phenomena, including
those in crack-like regions, and the relative difficulty in-
volved in tie experimental study of such phenomena provided
the motivation for the present work. The work consists of
two parts. In the first, the transport equations are pre-
sented and the method developed for their solution is dis-
cussed. The method is based on the use of an Alternating-
Direction Implicit (ADI) technique to obtain the time-
dependent solution to a two-dimensional formulation of the
ion transport equations. The boundary data may be of quite
general form. Concentration, concerntration gradient, ion
flux, or charge-transfer boundary conditions may be used.

In the second part, the solution technique is employed
in a systematic analysis of the factors influencing solution
chemistry and ion transport in crack-like regions. These
results are then extended using a one-dimensional formula-
tion of the ion transport equations. Finally, certain as-
pects of stress corrosion cracking sre discussed in the
perspective of the results obtained from che transport

analysis.
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II. TRANSPORT IN ELECTROLYTIC SOLUTIONS

| In this section the equations describing mass transport

in electrolytic solutions are presented. The equations are -
based on the theory of dilute electrolytes. Several addi- =
tional assumptions are then introduced; these .re discussed
and their implications considered. Boundary conditions are
then examined, and, because it plays a key role in the theory,
the electroneutrality equation is discussed in some detaii.
The section concludes with a discussion of the behavicr of
the field equations and boundary conditions under the class
of coordinate transformations used in the numerical calcu-
lations.

The Field Equations

The difference between an electrolyte and an ordinary
solution is that the dissolved species may exist as charged
particles or iong rather than as unchurged atoms or mole-
cules. The solvent itself is electrically neutral but has a
sufficiently large dielectric constant to maxe the existence
of the solute in the form of ions energetically favorable.
The solvent may be a solid, liquid, or gas. In this work,
however, 1t is assumed that the solvent is water.

The first element requiived to describe mass transport
is a relation between mess flux and the forces which induce
that flux. In this work, the flux equation based on the
theory of dilute electrclytes (the Nermst-Planck equation)
is used. In developing *his equetion it is assumed that the
total flux can b- erpressed as the sum of the fluxes due to
migration in an electrostatic field, sirple diffusion, and
solvent convection. The equation is written

Ji = -EMIFCD - DIVe + GV (1)
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J; = mass flux of ith dissolved species (mole/cmz—sec)

Z; = valence or charge number of ith species (equiv/mole)
M; = mobility of ith species (mcle-cma/joule-sec)

& = Faraday's constant (96,520 coul/equiv)

Ci = concentration of ith species (mole/cm3}

$ = elertrostatic potential (volts)

D; ~ diffusion coefficient of ith speciesb(cmz/sec)

= solvent velocity (cm/sec)

q <

= 'del' operator = ig& . jgﬁ + kg-

“

and {, ], and E_are the unit vectors in the three cartesian
coordinate directions, x, y, and z.

Following *the usual convention, the gradient of the
electrostatic potential is the negative of the electric
field strength. The mobility, m;, may be interpreted as the
average velocity, in meters per second, of the ith dissolved
species when acted on by a force of one newson per mole
regardless of the origin of chat force. The mobility and
diffusion coefficient are related by the generalized Nernst-
Einstein equation.

dling;}
a(inG; (2)

where
R = universal ges constant (8.317 joule/mole-K)
T = absolute temperature (°K)

¥ = activity coefficient of ith species (dimensionless)
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Each dissolved species also satisfies en equation of
continuity or mass conservation.

AC:;

ot = -V“gz + Gy (3)

o ==

—y
. .

where

t = Yime (sec)

(oo
(-

G; = rate of generation of ith species (mole/cm3-sec)

[
| S——

The quantity Gi in equation (3) may be positive, nega-
tive, or zero. If the ith dissolved species enters a homo-
geneous chemical reaction as a product, Gi is positive; if
it enters as a reactant, Gi is negative; otherwise it is
Zero.

=

S

If a homogeneous reaction is to be included in the
analysis, a relation between the rates of generation of the
participating species and their concentrations must be found.
i Consider, for example, a simple association-dissociation re-
action of the form

S

5L + SM o= 3N (4)

Equaiion (4) states that one mole of species L ccmbines
I with one mole of species M to form one mole of species N.
! The rates of generation of the participating species may be
1 expressed with sufficient accuracy by an equation of the form

L Gy = -Gy =Gy = k(\r;l Cu - kdp"’ (5)

P
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ke = forward rate constant (1/mole-cmn’-sec)

ki = backward rate constant (1/cm3-see)

While the rate constants, ka and kd, hare the dimensions
indicated, the units are usually suppressed when there is no
ambiguity in their meaning. The forward and backward rate

constants are related to the equilibrium constant, Keq’ by
the equation
! \
K = v ! ke
W, T CLC'/'}iG'N"O - kd (6)

In this work the solveni is assumed to be electrically
neutral and non-conductinz. (The small conductivity of pure
water is due to the presence of hydrogen and hydroxyl ions
resulting from the cquilibrium, BY + 0H” = H20.) Thus, every
homogeneous reaction must satisfy the requirement of charge
neutrality. In the reaction described by equation (4), for
example, the charge numbers of species L, M, and N satisfy
the equation

Zo+ 2y = 7y (7)

If, for the moment, the convective term in the flux
equation is set equal to zero, one more equation is required
to complete the set of field equations. That equation is a
relation between the electrostatic potential and the charge
density. The most accurate physical description is provided
by Gauss' law. For a medium with a constant dielectric
strength, this may be written as

1
I
[
i
[
q
i
|
{i.
I
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, _ Sb‘s's’
vh = "€ Ly 71y (8)
where
€ = dielectric constant (coul/volt-cm)
(7.083 x 107" for H,0)

Ng = total number of dissolved species in the electrolyte

As an alternative, it may be assumed that the charge
density is everywhere zero. This assumption is a good
approximation for electrolytes that are sufficiently concen-
trated. The condition of zero charge density or electro-
neutrality is written

N
Z:ZICL' = 0 (9)
(=1

It should be emphasized that either one of equations
(8) and (9) may be used but not both. The use of equation
(9) does not imply that the electrostatic potential satisfies
laplace's equation (VD= O). In this work the electro-
neutrality equation is employed. The relative merits of this
formulation are considered below.

To the equations already discussed must be added those
describing the motion of the solvent. These are a contin-
uity equation, a momentum equation, and an equation of state.
The continuity equation for the solvent is

.gﬂtz 1 V'(pz) - 0 (10)

where
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L = density of the solvent (gram/cm3)

For a Newtonian fluid with constant viscosity, conser-
vation of momentum is expressed by the Navier-Stokes equation

DY .. -~ e | |
pEF = VP E L e pTY (11)

where

hydrostatic pressure (dyne/cmz)
body force per unit volume (dyne/cm3)

T {2 U
0

coefficient of viscosity (dyne—sec/cmz)

—+
1

material derivative (éai;- + 179 )

There is no a priori constraint on the form of the body
force, X , in equation (11), Typically, however, one is
concernéd with forces which are expressible &s the gradient
of a potential, for example, the gravitational force. It
is convenient to separate the body force into two components:
that arising from a non-zero charge density in the solution,
and that due to all other csuses. Thus, the body force may

be written as

~i ¢!

N,

\ ) ‘ .
2@_ = -1073«(2_,12@05/1'\7@ + )(f (12)

——

where

x&= body force from all sources other than charge
(dyne/cm3)

The factor, 107, appearing in the equation results from

the conversion of energy units from joules to ergs. Usirg

[
|
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equation (8), equation (12) may also be written
L= e [vd|vd + X* (13)

Examination of equations (11) and (13) reveals that the
motion of the solvent is coupled to the motion cf the solute
species through the electrostatic body force. This coupling
is fundamental to the description of phenomena such as mass
transport through membranes and capillaries.

The equation of state is an expression relating tine sol-
vent density to its temperature and pressure. For an aquecus
electrolyte at room temperature, subjected to small gradients
of temperature and pressure, the solvent may be assumed in-
compressible. Making this assumption, the equation of state
is

£ = O = constant (14)

The concept of electrical current is closely related to
the ideas of mass transport in electrolytic solutions. It
is frequently useful, and occasionally necessary, to express
mass fluxes in terms of current densities. Since a current
is simply a net flux of charge and the solvent is non~con-
ducting, the current density may be written as

N.
Z%
I = 3% (15)
where
1 = current density (amp/cmz)

Equation (15) may be rewritten using equation (1) to
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express the fluxes and equation (9) to eliminate the co-
efficient multiplying the solvent velocity. The result is

Ny

Ne
_I_ = - [3'227\121m[01] V@ -V [‘3*%2@[(‘:5] (16)

The second term on the right is zero when the composi-~
tion of the electrolyte is identical at every point or when
the diffusion coefficients are all the same. In this case,
eguation (16) reduces to Ohm's law.

I= -Kvd (17)

where

Ny
ZE 2
K = solution conductivity (1/ohm-cm) = (3’[‘:12‘- m;Ci)

From equations (3), (9), and (15), it may be shown that

V-l = 0 (18)

—

Equations (16) and (18) were obtained using the electro-
neutrality equation (eqn. 9). If equation (8) were used in-
stead, the equations would have a more complex form.

In the arlier discussion of electroneutrality and
Gauss' law, it was observed that one of the two should be
used, but not voth. Thus the electrostatic potential does
not, in general, satisfy Laplace's equation. To emphasize
this further, equations (16) and (18) may be used to obtain
the differential equation that the electrostatic potential
does satisfy.

l

= = T == &=

o
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Ny Ny Ng
[Lzmc]vd + v[Lzmclwd + v{lznel = 0 (19

Equations (1), (2), (3), (9), (10), (11), {13), and {14)
form the complete set of field equations describing mass
transport in electrolytic solutions. The assumptions made
in obtaining them do not seriously restrict their applica~
tion. In using the equations here, however, several addi-
tional assumptions have been made and these are examined be-
low. In some cases they have been dictated by necessity;
in others, they are made for the purposes of simplicity only.

It has been assumed that the solution is 'ideal' so the
individual ion activity coefficients are all unity. With
this assumpiion equation (2) reduces to

The assumption implies that the ion diffusion coeffi-
cients are concentration independent. Also, it limits the
coupling between ions tc that arising from the action of the
electrostatic potential., The difference between a diffusion
coefficient at extreme dilution and one at one mole per liter
is typically about twenty to thirty percent. By proper
selection of the concentration at which a diffusion coeffi-
cient is evaluated, the variation ir a particular problem
can usually be made much less than this.

Neglecting ion-ion interactions is more restrictive
than simply ignoring changes ir the diffusion coefficients
with concentration. But, there is very little published
data on the thermodynamic properties of other than single-
salt electrolytes, so there is no practical basis for
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evaluating the necessary activity coefficients. If one
wanted to study such ion-ion interactions, the practical
difficulties notwithstanding, it would be preferable to use
a different formulation of the flux equation (see, for ex-
ample, Reference 12).

Several assumptions have been mzde to simplify the -
equations describing the solvent velocity and to decouple
these equations from those describing ion transport. The
first is that the solvent velocity is slowly time-varying.
For an aquecus electrolyte, the rate at which en ion con-
~entration reaches steady state is two to three crders of
magnitude slower than the rate at which the solvent velocity
reaches steady state following a step change in a displace--
ment boundary cordition. Since the time scale is determined
by the rate of diffusion, this assumption introduces no
serious error.

It is also assumed that the acceleration terms on the
left-hand side of the Navier-Stokes equation are negligible
with respect to the viscous terms on the right-hand side.
Since the Reynolds number is less than 10-4 for all the
problens considered here, this assumption introduces no
serious error.

To decouple the equations governing the solvent motion
from those governing ion transport, it is nssumed that the
body force in the Navier-Stokes equation is zero. The justi-
fication for this does not rest with the use of the elactro-
neutrality equation as opposed to Gauss' law. Even when
using the electroneutrality equation, equation (13) should
be used to express the body force.

The electrostatic body force increases as the current
density increases and as the electrolyte concentration de-
creases. It is negligible with respect to the viscous force
when the current density is sufficiently small and the
electrolyte concentration is sufficiently large. It is
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difficult to establish a priori how small is 'sufficientliy
small' or how large is 'sufficiently large'. Equation (13)
may be used after the fact, however, to estimate the magni-
tude of the electrostatic body force using the value of the
electrostatic potential from the soclution of the ion trans-
port equations. This has been done for the problems consid-~
ered in this work. The electrostatic body forces are negli-
gible in every case.

Equation (11) may be rewritien using theze assumptions.

-VP + pv = 0 (21)

The final simplification is to restriect attention to
planar problems. If x, y, and z are the three orthogonal
axes of a rectangular cartesian coordinate frame, and § is
any function of the independent coordinates, this assumption
may be written as

%% = 0 (22)

These are the assumptions mede in this study. They are
typical of those csually made and are less restrictive than
the sssumptions invoked in most applications of the theory
(see, for example, Reference 4). We have discussed them
both to indicate the limitations of the theory used here and
to rrovide a niore complete view of the general thecry than
was presented above [12].

With the above assumptions, the field equations may be
written in more compact form. Using equatiors (14) and (22),
equation (10) becomes

»
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Equation (23) is satisfied identically using a stream
function, ¥, defined by

v = curl(¥Pk) = %ﬁ.&-— a%i, (24)

Using equation (21) and the stream function defined by
equation (24), it follows that

TP = 0 (25)

VP = 0 (26)

e BT —— T —— N - |

where P and oV*{' satisfy the Cauchy-Riemann conditions

| yman

P~ 2], &= -l (20

<«

| e

Combining equations (1) and (3) and using equations
(20) and (24), the concentration of each dissolved species
satisfies the equation

— =

oG
ot = ZDGVO + ZDVCV + DVC ~ VopenllVhl +Gy  (28)

|
where

o = CNQ; = dimensionless potential (29)
RT,
(RT4) = 25.6 millivolts at 25°C

The system of field equations is thus reduced to

NS PNE poy wq P
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equation (25), N, equations of the form of equation (28),
and the electroneutrality equation (egn. 9).

Boundary Conditions

Consider a domain, {3, lying in the x-y plane and
bounded by a curve, 3. Let N and t be the cartesian
unit normal end tangential vectors to the curve (3, re-
spectively. TFollowing the usual convention, the unit normal
is positive outward; the tangent vector is positive in the

counterclockwise direction. Within $9 all the necessary

functions are assumed to be defined, continuous, and have
as many continuous derivatives as may be required.

It is convenient here and in later sections to use
subscript nots’ion to denote both vector components and
partial differentiation. A subscript appearing aione in-
dicates a vector component. A subscript following a comma
indicates differentiation with respect to that variable.
For example, if V is a vector,

Vo= Wi+Vi = Van+\t (30-a)
and - - -

3 Y :

\l‘-\-/— - .gxl + _g\é! = \'/X,X + VL&L) -= ann' + VQ..'(‘. (30"b)

With this notation in mind, consider the toundary con-
ditions for the stream function, ¥ . Within the domain, ¥
satisfies the biharmonic equation. Since the equation is
fourth order, two constraints must be impoeed ai every bound-
ary point. From the definition of ¥ (eqn. 24), the most
natural boundary data are

q’m = —Q}t3 q\)t R ‘(\A'Jn (31)
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where

A

U, = velocity component normal to the curve 3

6;: velocity component tangential to the curve D

In practice, it is usually more convenient to use the
value of the stream function than its tangential derivative.
Wher i%,is known, the stream function is easily obtained by
integration. If s is the coordinate measured along (3,

¢ 0
P = Yo+ \W, 40 = P + AR (%2)
(o] o

where the integral is taken in the counterclockwise direc-
tion. Since the fluid velocity is independent of the ab-
solute value of ¢, the integration constant V(o) may be
assigneu any convenient vaiue.

In this work our primary concern is transport in a
crack-like region. In this case, the boundary coincides

over a portion of i%s length with a solid-liquid phase bound-

ary and the fluia motion is induced by the motion of the
solid boundary. The velocity of the solid boundary is inde-

pendently specified and it is assumed that the fluid velocity

is, at every point on the solid-liquid boundary, the same as
that of the sclid (the so-cal.ted zero-slip condition).

Along 4 line of symmetry, the tangential velocity is
usually unknown; if so, it is impossible to prescribe the
normal derivative of the stream function. However, t.e tan-

gential velocity typically has an extreme value, so the spec-

ification of the first normal derivative may be replaced by

Prn! = 7?mn = 0 (33)

|6
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For problems involving mass transport in a crack-like
region there is generally no precise definition of the fluid
velocity along that portion of the boundary corresponding to
the mouth of the crack. Here it is necessary to construct
approximate boundary conditions. This may be done using the
lowest order polynomial that satisfies the differential equa-
tion and is consistent with the other boundary data.

The boundary specification for the ion transport equa-
tions is more involved than that for the stream functicn.

For a solvent containing Ns dissolved species, equations (9)
and (28) constitute a system of (NS + 1) equations in

(Ns + 1) unknowns. N, of these are parabolic partial dif-
ferential equations (first order in time and second order in
space; and one is algebraic. Suppose that N, (NC:£ Ns)
species have non-zero charge numbers while (NS - Nc) have
zero charge numbers. The (NS - Nc) equations are then inde-
pendent; their solution reduces to the solution of (NS - Nc)
separate differential equations.

The remaining equations are coupled through the electro-
neutrality equation. While these have a linear form, they
are in general quasi-linear since the electrostatic potential
is itself a function of the concentrations.

Besides the coupling of the equations, the remaining
syst:m of (NC + 1) equations is remarkable because of the
character of the coupling. Since the electroneutrality equa-
tion is algebraic, the Nc concentrations are linearly depen-
dent. This means that exactly N, [rather than (N, + 1)]
cenditions must be imposed at each boundary point, and these
must be such that one is effectively a boundary condition on
the electrostatic potentiel.

With the above remarks in mind, consider some of the
forms which the boundary and initial conditions may assume.
The initial data must be of rather simple form. The concen-
trations of (Nc - 1) of the ions may be arbitrarily specified
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as functions of the spatial coordinates. The concentration
of the remaining ion is then fixed by electroneutrality.
Because the differential equation for the electrostatic '
potential exhibits no explicit time dependence (see eqn. 19),
the initial value of the potential is determined by the ini-
tiel values of the ion concentrations and the boundary con-
ditions.

The boundary conditions may take any one of a varietly
of forms. However, all must satisfy the constraint imposed
by electroneutrality. Those easiest to use are the ones
that reduce to one of the classical forms for a second order
partial differential equation. ‘

If s is the coordinate measured along {3, Dirichlet
boundary conditions are of the form

¢ |, = & [ = L(Ns-9)  (34-a)
Ne L
=L 37 A
Ol = Zuin B0 Zy# 0 (34-0)
A \
(b . = (;)({,) (34—0)

A A
where Ci(s) and O(s) are arbitrary functions of the coordi-
nate s.

= ETT PR e 0 Pet e pUy P R SEE -l .

Neumann boundary conditions are of the form

VCrn| = G i = 1,(Ns-1) (35-a)
[
Ne-1
1
Won! =5 Lzcte  z.#0 (35-b)
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| = S (35-c)

o= =i

where C;(s) and ¢f(s) are arbitrary functions of the coor-
dinate s along (3.

—

r While Dirichlet and Neumann boundary conditions are

lj easy to apply, the normal derivative of Q)can seldom be
independently specified, and it is usually necessary to use

[J the normal flux. From equations (1), (20), and (29), the
flux of the ith species is ‘

L .

{

Ji = "Z[D,;C(V(b - D[VC; + _?{_)Cg (26)

S

‘ Equation (%6) mey also be written

: =&+ (37)
| where .

Jﬁ = chemical flux = -7DC;Vd — DVC; (38-a)
- gz = convective flux = + UG (38<b)

—

At a point on a moving boundary, the solvent velocity
is equal to the velocity of the solid by the so-called zero-
slip condition. There is generally no physical basis for
prescribing the normal component of the total flux at such
a point. The normal component of the chemical flux, however,
dependas on the rates of the reactions at the solid-electro-
lyte interface and can usually be determined. Thus, the flux
specification has the form

. * ,
Fon| = -Enesd e nscin), = Ty o= (29

*
where the Ji(s) are arbitrary functions of the coordinate s
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measured along the boundary curve (3.

The flux specification expressed by equation (39) is
identical to a Neumann boundary condition for uncharged
species. When the normal flux is zero, the flux‘specifica-
tion looks like a homogeneous linear boundary condition in
concentration.

Charge-Transfer Boundary Conditions

One of the aims of this work has been to describe the
behavior of real physical systems. Among other things, this

requires the use of bourdary conditions consistent with the .

kinetics of electrochemical reactions. Boundary conditions
of the type described above do not satisfy this requirement.

In the pages that follow, the relationship between mass
flux and reaction current density is discussed. The rela-
tionship between the reaction current density and the field
variables is then examined. Finally, the way this infor-
mation is comtined to construct boundary conditions is de-
scribed.

To make these ideas explicit, consider as an example a
simple redox reaction of the form

S = S¢ + ke- (40)

where

% = reduced substance

% = oxidized substance
k = electrode reaction valence = (Zo - Zr) >0
Q@ = an electron reieased into the solid electrode
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The reaction expressed Ly equation (40) cen take place
only at an electrode-electrolyte phase boundary, since the
electrons generated in the reaction must be removed from the
electrolyte. By convention, the equation is wriiten with the
electrons (e”) on the right, and the coastant k is a posgitive
integer. When the reaction goes to the right it is said to
proceed in the anodic direction. When it goes to the left it
is said to proceed in the cathodic direction. Since k is
positive, the charge number of the oxidized species is
greater than that of the redvced spsciea, and an anodic
current corresponds to a flow of positive charge from the
electrode into the electrolyte.

An example of such a reaction is the oxidation of the
ferrous ion to the ferric ion according to the reaction

Fett =  Fe* + ¢ (41)

It should be emphasized that the reactions described by equa-
tions (40) and (41) differ from ordinary chemical reactions
in requiring the transport of charge from one phase (the
electrolyte) to another (the electrode) across a phase bound-
ary.

For reactions more complex than those described by equa-
tions (40) and (41), it is convenient to write the reaction
equation in the more compact and general form

T
;511Mz ke =0 (42)

where

Bij = stoichiometric coefficient of ith species in
jth reaction
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=<
1

either chemical formula of ith species or
molecular weight of ith species

x
.
1

= electrode reaction valence of jth reaction

T, = total number of species entering into jth reaction

Note that the stoichiometric coefficients, ¥, are less
than zero for the reduced species in the jth reaction and
greater than zero for the oxidized species., The stoichio-
metric coefficients are usually assigned integer values.

The electrode reaction valence satisfies the requirement

EK@ng - kj = 0 (43)

When the reaction described by equation (40) procedes
at an electrode-electrolyte interface, the generation of one

mole of oxidized species, S in the electrolyte is accom-

’
panied by the consumption og one mole of reduced species,
Sr’ and the pascage of k moles of electrons from the elec-
trolyte, through the electrode and into an external circuit.
The overall process may be viewed as consisting of three
simultaneous fluxes: a flux of oxidized species into the
electrolyte, an equal flux of reduced species out of the
electrolyte, and a flux, k times greater, of positive charge
into the electrolyte. The charge flux is Just an electrical
current. Since the mass fluxes are proportional to the
charge flux, it is convenient to use the reaction current to
describe the reaction rate. According to the convention
above, the current is positive (anodic) when the reaction
procedes to the right.

Thus, when the boundary 3 coincides with an electrode-
electrolyte phase boundary, the fluxes of the species in re-

action (40) m:y be expressed as
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where

I = reactior current density (amp/cmz)

—

The fluxes in equations (44) are measured relative to the

boundary, so the convective components do not appear in the
equations.

P
—

If more than one reaction occurs, the flux of each

species is the sum of the fluxes from all of the reactions.
Thus, from equation (42),

[R——
[ S—

|

reaction current density of jth reaction

—
Z
[

total number of reactions involving the ith species

Bquation (45) is the desired relation between mass flux
and the electrochemical reaction rates.
as 2quation (39).

It has the same form
When the rates of all the reactions are

constant, the boundary conditions reduce to flux boundary
conditions.

— =

—

To complete the boundary specification, it is necessary
U to express the reaction current density as a function of the

other field variables. Consider, as an example, the reaction
described by equation (402).

The reaction current density many
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be written
I = I, - L. (46)
where
I, = anodic current density (amp/cmz)
I, = cathodic current density (amp/cm?)

In equation (46), the overall rate is expressed as the
difference tetween the forward and backward reaction ratss.
These may ir turn he i.iitten

Io = Kalnov ;)[dk 3 ($m- <I>§)/RT] (47-8)
I, = ¥Ceoxp!l-(t-a)kd pm - $)FT] (47-b)
where

Ko = forward (anodic) rate constant (amp-cm/mole)
K. = backward (cathodic) rate constant (amp-cm/wole)
C. = concentration of reduced especies (mole/cmd)
Co = concentration of oxidized species (mole/cmB)

= charge-transfer coefficient (Duvet 4 )

o)
d«= electrostatic potential of sclid metal
electrode (volt)

= electrostatic potential in the electrolyte at
the phase boundary (volt)

$3
1

Equations (47) are similar to those describing the for-
ward ard packward rates cf e first-order, homcgeneous chemi-
cal reaction. The forward rate ies proportionel to the con-
centraticn of the reduced species (the reactant); the
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backward rate is proportional to the concentration of the
oxidized species (the product). The rate constants, Ka and
Kc’ are intrinsically positive. Although usually written as
constants, they are actually functions of temperature and
pressure. The exponential terms do not appear in the equa~

‘tions describing the rate of a homogeneous reaction. They

appear in equations (47) because the potential difference at
the electrode-electrolyte interface acts as a barrier to
charge transport. (For a detailed analysis of the rates of
charge-transfer reactions, see Reference 5.)

A more convenient expression for the reaction rate can
be obtained by rewriting equations (46) and (47). When re-
action (40) is at equilibrium,

I = I,-L =0

and

einlid) ‘48’

o>
-4
!
=
|
e
[

where

(o]

superscript = value of parameter at equilibrium

A¢°= equilibrium potential difference across
electrode-electrolyte interface

The rate constants in equatior (48) may be eliminated
by introducing the standard electrode potential, E°, The
standard electrode poiential is defined as the equilibrium
potential Cifference, relative to the standard hydrogen
electrode, when the activity of each species entering the
reaction is one. It was assumed above that the electrolyte
is an ideal solution. Invoking the same assumption here,
the activity of a cpecies is one when its concentration is
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one mole per liter. Thus, from equation (48),

e = (5 n() (49)
s = e+ (EnlE) 0

Bquation (50) shows how the equilibrium potential varies
with concentration. The standard equilibrium potential has
been tabulated for many charge-transfer reactions [13]. It
may be determined directly from electrochemical experiments
or by calculation from independently measured thermodynamic
data.

From equation (46) and the condition for equilibrium,
the anodic and cathodic current densities are equal at equi-
librium. This value of the current dernsity is called the ex-
change current density and may be determined from either of
equations (47) and equation (48).

P Cg
L= & = 1 = KkGexplan(fes)]
(t-a) o 1) o
L = Ko K G Co (51)
where

I, = exchange current density (amp/cmg)

Using equations (49), (50), and (51), the reaction rate
expressed by equations {46) and (47) may be written in more
compact form.

-

( \ )
I =~ I{(—S:-}‘exo[aw-s'RT] - (& _-u-qsk3=7/m]} (52)
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7 = G- G - 2d, (53)

Bquation (52) is the form usually found in the litera-
ture. The quantity, 7, defined by equation (53) is called
the charge-transfer overvoltage. It indicafes the degree to
which the reaction departs from equilibrium. When the con-
centrations are fixed at their equilibrium values, the sign
of the current density is the same as the sign of the charge-
transfer overvoitage. Thus, the current density is anodic
when the overvoltage is positive.

Two specializations of equation (52) frequently appear
in the electrochemical literature and should be mentioned.
When the concentrations of reacting species are everywhere
equal to their equilibrium values and the charge~transfer
coefficient, &, is equal tc one-half, equation (52) becomes

I = Zlosuw1[k3?/RT] (54)

The other special case occurs when the overvoltage is
large. When the argument of the exponential terms in equa-
tion (52 is large with respect to unity, one of the two
terms is small with respect to the other. For example, when
7 has a large pcsitive value, the second term can be ne-
glected and the current density is approximately

I~ LS&xplaksy/rT] (55)

If, in addition, the concentration of the reduced species 1s
close to its equilibrium value, ejuation (55) may be written

7 ~ A + Bloall) (56)
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where _
A 2—(0%?_\3‘)['1(10) (57-a)
D =+('%l;,;)ln(io) (57-b)

Bauation (558) is the so-called Tafgl polarization law.
When 7 is plotted as a function of Iog(IX), the constants B
and A correspond to the cslope and zero intercept of the curve
respectively. If the eiectrode reaction wvalence, k, is
known, the kinetic constants o and l,, may be determined
i from equations (57).
| Fcr analytic work, the exchange current density defined
by equation (51) is inconvenient because its value depends
on the choice of reference conditions. Since the standard
electrode pctential is defined with unit astivities of the
reacting specieg, it is convenient to use the same conditicns
to define a standard exchange current density. Thus,

({-a} o
L = K, K. = I (58)
where

I3 = standard exchange current density (amp-cm/mole)

The units of the standard exzchange current density are
chosen for later dimensional clarity. As before, it is

assumed in equation (58) that the eisctrolyte is an ideal
solution.

Taking as reference conditions unit concentrations of
the cxidized and reduced'species, and.introducing the dimen-
sionless potential from equation (29), equation (52) becomes

1 =1 {Cf\exp[ukr;] - Coexp[~(1-c.,«)kk§]} (59)

i e oo e Wt
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£ = o 0,- (%) (60)
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By analogy with the dimensionless potential, ¥ will be
called the dimernsionless overvoltage. Note that a zero value
of the dimensionless overvoltage .~ ~=sronds to zero current
only in the special case when the cuncenirations of both the
oxidized and reduced species are egual to one mole per liter.

For the examplc considered, the redox reaction described
by equation (40), equations (44) and (59) constitute the de~
sired boundary specification. Since the electrode is assumed
to be a good conductor, ¢ is not a function of position but
may be a function of time. The values of C., Co, and ¢, ap-
pearing in equations (59) and (60) are those at the electrode-
electrolyte interface.

Thus, when the boundary (3 to the domain ) coincides
with an electrode-electrolyte interface, and the redox reac-
tion described by equation (40) is the only charge-transfer

reacticn occurring at that interface, the boundary specifi-
cation is

—Joon| = Jionl = 3 (61-a)
SCMLU S
.J.Z'.@.s= 0 { #* o (61-b)
where S
. I
J = (ﬂ LCAzxpf_o«kzz} ~ Co@xp[-(t—a)kzﬂ} (61-c)

Equations (61) are a straightforward extension of the
flux boundary conditions discussed above. They are awkward
to handle in practice, since they are non-linear in the di-
mensionless potential. I3ul other than convenience, there is
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no limitation to their use.

To generalize these results, note that equation (45) is
the generai relationship between mass flux and reaction cur-
rent density. If, for each reaction, the current density in

equation (45) can be expressed as a function of concentration

and potential, the boundary specification will be complete.
It should be emphasized that, while equation (59) is typical
of those describing charge-transfer kinetics, equations of
this form do not always provide an adequate description of
reaction kinetics. An example is the reaction discussed in
Appendix B.

Electroneutrality

In the original presentation of the transport equations,
it was observed that Gauss' law is more accurate than the
electroneutrality equation. 1t was asserted that the elec-
troneutrality equation is approximately satisfied by elec-
trolytes which are sufficiently concentrated, bvt no evi-
dence was presented in support of that statement. The elec-
troneutrality equation is, nevertheless, employed throughout
this work. ,

At that point, we had nc basis for selecting one equa-
tion over the other. Here, having examined both the field
equations and bouncary conditions, we are in a better posi-
tion to discuss the merits of using the electroneutrsliity
equation,

By using the electroneutrality equation, tne differen-
tial equation for the electrostatic potential is simplified
and reduced in order. Using equations (28) and (29) and
Gauss' law (eqn. 8), the differential equation for the di-
mensionless potential, ¢, is

I
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$&(v0) = BDwd — BY(vd)-curl($k) (62)
~ Pvd - vP-vd - v:Q

where
y = RVge | (63-2)
D =~ ';‘sZ;D-L | (63-b)
P = Li#bc (63-c)
Q = L Do (63-0)

Using equations (28) and (29) and the electroneutrality equa-
tion (eqn. 9), the differential equation for the dimension-
less potential is

PV + wvPvd + VR = O (64)

Bquatior {62) is a fourth-order, parabolic, partial
differential equation. Equation (64) is second order and
contains no explicit time dependence. Both equations look
linear; neither is.

Rather than discuss equations (62) and (64) in their
general forms, we will limit our attention to a special case
for which the forms are simplified but the essential features
are retained. Specifically, let
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=

e

e
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=D, all i= LN
0, all £ (steady state) (65)

™
-
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0

constant (zero solvent velocity)

~ Using these assumptions, equations (62) and (64) become

V- (V) - sVv'O = O (66)

v - 0 (67)
where N

T = Z'ifCL- (ionic strength)

Using the same assumptions, equation (28) reduces to

G/
ZOVD + ZVoeVd o+ VG o+ (&%) - o (68)

It has already been shown that NS equations of the form
of equation (68) and the electroneutrality equation consti-
tute a system of Ns equaticns in NS unknowns. On the other
hand, N_ equations of the form of equation (68) and Gauss'
law comprise 2 system of (Ns + 1) equations in (Ns + 1) un~
knowns. The boundary specification which is complete when
using the electroneutrality eguation is not complete when
using Gauss' law.

This result is also reflected in equations (66) and
(67). Equation (66) is fourth-order in ¢; equation (67)
is second-order. To obtain a solution to equation (66),
two constraints must be imposed at each boundary point.
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Bquation (67) requires one.

Boundary conditions for the system of equations using
Gauss' law may assume various forms. As was done for the
system based on the electroneutrality equation, these may be
determined from a detailed analysis of the original system
of equations. The same result may be developed heuristically
from equations (66) and (67).

Jf the normal flux of each species is specified every-
where on the boundary, the normal current density is also
specified (by eqn. 15). If, in addition, the ionic strength,
U, is constant, flux boundary conditions are equivalent to
specifying the normal derivative of ¢ everywhere on the
poundary.

A boundary condition of this form is sufficient for
equation (67). Another is required for equation (66). Une
possibility is suggested by Gauss' law; nemely, specifying
the charge density in the electrolyte at every point on the
boundary.

For the system of equetions including Gauss' law, cther
conditions could be imposed and it is not necessary that they
be the same at every boundary point. Nevertheless, some-
thing equivalent to the condition above must be imposed in
addition to those used for the system based on the electro-
neutrality equation.

For that portion of the boundary corresponding to an
electrode-electrolyte interface, this introduces a serious
problem. While the ion fluxes can be determined from the
rates of the cherge-transfer reactions, the first normal de-
rivative of ¢ is proportional to the charge density on the
surface of the electrode. There is published data on the
rates of many electrochemical reactions, but there are vir-
tually no data on surface charge density for solid metal
electrodes. Lacking such data, we would prefer not to use
Gauss' law if there is some other justification for ueing
the electroneutrality equation.
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Equations (66) and (67) differ by the appearance of a
biharmonic term in equation (66) missing from equation (67).
To estimate the importance of this term, consider the special
case when the ionic strength, U, is constant throughout the
electrolyte. In this case, equation (66) may be written

=~ b MW o8 W8

Vo - SV ~ © (69)
where
E ey I
T/
& = V&7 §X£K¢ (70)
4 -
I
The constant & is called the Debye length. When it is
small with respect to the characteristic dimensions of the

| soumapdy

demain {3 (the electrolyte), the second term in the brackets
in equation (69) is small with respect to the first. The

| u———] .

biharmonic term in equation (66) can then be neglected, and
the electroneutrality equation used to describe the charge

-

distribution in the electrolyte. i
In Figure 1, the Debye length is plotted as a function

of ionic strength. It is less than 10"5 centimeters when g

the ionic strength is greater than 2 x 10_5 equivalents -

squared per mole liter. For a 1-1 aqueous electrolyte (e.g. 7

an aqueous sodium chloride solution), this corresponds to a
salt concentration of 10'5 moles per liter. The minimum di-
mensions of all the domains considered in this work are of
the order of 10—3 to 10'2 centimeters. The ionic strengths
are typically of the order of 1072 40 1.0 mole per liter.
Under these conditions, *the electroneutrality equation does,
in fact, represent a valid cpproximation to vauss' law.

The use of the electroneutrality equation thus simpli-
fies both the field equations and the boundary conditions.
Because it is also an accurate approximation over a broad
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range of interest, it is possible to exploit these simplifi-
cations,

Coordinate Transformations

When solving a boundary value problem, it is often con-
venient to choose a coordinate frame so the boundary coin-
cides with a coordinate direction. For example, when the
boundary curve & is a cirecle, it is usually convenient to
transform the field equations and boundary conditions to
polar coordinates so the boundary coincides with a constant
value of the radial coordinate. The advantage gained in
simplifying the boundary conditions is offset in part by
additional compiexity in the field equations.

Under the c¢lass of coordinate transformations used here
the field equutions are particularly well-behaved. Consider
the coordinate systems (x,y) and (¢,?). We wish t¢ trans-
form the field equations and houndary conditions from x-y
coordinates to §-7 coordinates in such a way that the do-
main {3 in the x-y coordinate frame is transformed onto the
rectangle ¥ in the -7 coordinate frame. It is assumed that
such a transformation exists, so we can write

Il

X(e,7) (71-a)
uls. 7 (71-b)

I

Y

where the functions x and y are continuous, single-valued,
and have as many continuous derivatives as may be required.
In addition, it is assumed that x and y satisfy the Cauchy-
Riemann conditions,

x% = Y,y (72-a)




Ky = =

Under such a transformation, the field equations

(72-b)

(egns. 28, 9, 25, ard 26) assvme the following foru ir the

§-7 coordinate frame:

YR, = ZDWGYH) + DG ~ VCr&wlPk) + WGy
Ny

Z.chi = 0

(=t

Fote + RedE) + Redy) £ Ry =0
7P = O
where

2 = unit vector in the positive §-direction

m = unit vector in the positive 7-direction

vo=i% * oy

v = %;z. + g’%z

v d v 2dmp + o
arl = Q__-g,? ~ ._fg,-gﬁo—

W= x4 o+ x

o= X

F, = -~4HR,,

F, = -4aXX,

(73)

(74)

(75)

(76)

(77-a)-

(77-%)
(77~c)
(77-4.)
(77-e)
(77-£)
(77-€)
(77-h)
(77-1)
(77-3)
(77-k)
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The operators in equations (77-c) through‘(77—f) are
defined by analogy to the operators in cartesian coordinates.
The function X, defined by equation (77-g), is called the
warping function and indicates the extent to which a line-
element at a point in the x-y coordinate frame is stretched
or compressed by the transformation at the corresponding
point in the £-7? coordinate frame.

The electroneutrality equation (eqn. 74) is unaffected
by the transformation. Equation (76) is analogous to the
original equation. The conservation equation (eqn. 73)
differs from the original equation only by the appesrance of
the warping function as a coefficient multiplier in the terms
not containing spatial derivatives. Only the biharmonic
equation (eqn. 75) is significantly affected by the coordi-
nate transformation,

The transformation of boundary conditions is straight-
forward. Any function of the coordinates x and y may be
written as a function of the coordinates ¢ and 7 using the
transformation functions of equations (71). It should be
observed, however, that, for an equation expressing a vector
quantity as a function of the gradient of a scalar quantity
or the curl of a vector potential, the warping function ap-
pears in the transformed equation. Thus, wher transformed to
the g-7 coordinate frame, the flux equation becomes

1. ) ,
J = ——R LZ(D{C{V({} + D;VC, + CC’JH\LD}'\_\] (78)

Similarly, equation (24) becomes

{
v = ¥curl($k) (79)
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Equations (73) through (79) may be used in any coordi-
nate frame, (§,7?), for which the transformation functions
satisfy the Cauchy-Riemann conditions (egns. 72). The par-
ticular form of the transformaticn functions is, of course,
dictated by the shape of the domain {J in the x-y coordinate

frame.
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: III. METHODS FOR SOLVING THE TRANSPORT EQUATIONS

L In this section, some of the methods for solving the
{ 2lectrschemical transport equations are discussed. The
L numerical technique used in this work is outlined in the

next section. Here, consideration is limited to the system
{
{] consisting of Ns equations of the form of equation (28) and

the electroneutrality equation, It is assumed that Gi =0
(for all i) and that the solvent velocity, ¥, is indepen-
dently specified. For convenience, the equations are dis-
played below.

oGi
| 5t = ZDCVO + ZDNCAD + DiVe; - V0V (80-2)

LG = 0 (80-b)

=

In several cases the system of equations reduces to a

|

system of linear equations. For these cases solutions can
be obtained by classical methods [12].

When the dimensionless potential is cr-=tant, equation
(80-a) becomes

(0%

C[
¥ = nvn - ey (#1-2)

——

- O

Equation (81-a) is the so-called convective-diffusion equa-

L tion. Since the ion concentrations are coupled through the
electroneutrality equation, the solution set contains the

] solutions of (NS - 1) linearly-independent differential equa-
tions.

If, in additior to the dimensionless potential, the
solvent velccity is zero, equation (80-a) reduces to the
equation desecribing transport by simple diffusion.

[
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3C,
3t = D)V (81-b)

~

.

o

Once again, the solutions are coupled through the electro-

Py  Bumy DEN

neutrality equation, and the solution set consists of
(NS - 1) linearly-indeperdent solutions. Equations (81)
have been studied extensively. They can usuclly be solved

b

bty the method of separation of variables or by the use cof
similarity transforms. A complete discussior of solution

Tl

techniques with application to specific boundary value
problems is contained in References [14]) and [15]. .-

Depending on the sclvent velocity, one of equations E,
(81) can be used wnen the potential gradient is small. Ne-
glecting the potential introduces an error, but this can be
tested hy generating solutions to i1hke complete set of equa-
tions and determining thc extent ito which electroneutrality
is violated. IT

FoR (82)

where the C; are the values obtained from one of equations ?
{81), the error is “igible. i

When the electrolyte compcosition is everywhere the same,
equations {80) reduce to Laplace's equation for the dimen-~
sionless potential.

b

vd = 0 (83)
As is true for the diffusion equetions, methods for solving -
Laplace's equation are well documented. this equation has T
beeus used in a wide variety of electrochemical problems. It i

is accurate at short times in many time-Jependent problems
and at steady state in well-stirred electrolytes.
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In some cases, equations (P0) reduce to a system of
linear equations which can be solved by classical methods.
The simplest and most important is the case of the binary
electrolyte [12]. When N, is two, equations (80) can be

written
aCy , - -
3t = ZLGVA + ZDVCsV + DV, - V- VC, (84-a)
ACe

ét = ZLDZ CLVZ(I‘ + ZZD;_\?Cz' V® + ngzcz - Z‘.{'I‘VCL (84-—b)
Zi!‘\"; + ZZCZ. = 0 (84-0)

Multiplying equation (84-a) by L,, equation (84-b) by D,,
and adding

0 7
5{[ch1 + DiCJ = DiB;V" Cit+ Gy - g"V[ch,\u chi] (85)

Substituting for C, in equation (85) its value from equation
‘-¢) and rearranging,

o]
ot = {d.vie - 1Ave (86)
where (
\Z = 7)DiD,
£ = "TH-In

Equation /86) is just the convective-diffusion equation
and may be solved by the technique discussed above. Note
that species 2 satisfies the same differential equation
(eqn. 86), and that &, = {8, After solving equation (86)

Liavax
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for C,, C, can be cbtained directly from equation (84-c).

The dimensionless potential can then be determined from
equation (84-a). However, a simpler expression is obtained
by multiplying equation (84-a) by £, and equation (84-b) by
Z,. Adding the resulving equations and using equation (84-¢)
to eliminate 02 yields

! Di‘D.t
CVd + VCoVd + ZD, 7L = O (87)

While methods for solving Laplacefs equation and the
diffusion equation are welli Jocumented, there ic nuv general
procedure for solving the transport equations (eans. 80).
For prectlems involving dependenrnce cr one spatial variatle,
the method outlined in Appendix C can sometimes be used.

The method is based or tresting the potential Q as an un-
known function in the solution of equations (8C-2). Using
these sclutions and the electronecutrality equation, an in-
tegral equation is obtained for ¢. The form of the equation
varies from one problem to another but is typically non-
linear, The usefulness of the method depends on the effort
required to extract a solution from the integral equation,
No way has yet been found to extend the method to two or
three spetial variables.

Approximate solutior. techniques are of two general
types: approximate analytic methods and numerical methods.
Perturbation methods are the most powerful of the analytic
ones. These are based on the idea that a small change in one
of tke field variables or boundary ~onditions should cause
only small changes in the solution. The equations for the
binary electrolyte (eqns. 86 and 87) provide the most satis-
factory basis for such methods.

In the simplest perturbation method, the concentrations
of the two principal ions are determined from equation (86).
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The concentrations of the minor species are determined from
equation (28), using the electrostatic potential obtainc?

“from equation (87). The electroneutrality equation is then

used to obtain an improved estimate of the potential. There
are, of course, more sophisticated methods and they may be
used iteratively to improve the accuracy of the approxima-
tions.

Numerical methods have receivedvincreasing attention in
recent years. Much of the work has been based on some spe-
cialization of the ior transport equations. For example,
the work revorted in Reference [16] is based on the convec-
tive-diffusion equation. Such approximations can be extreme-
ly useful, but ornly that work including the effects of both
diffusion and migration is considered here.

The 'MKT' analysis dev loped by T. R. Beck [10] is
basically a one-dimensional, steady-state formulation of the
ion transport equations using a particular set of charge-
transfer bcundary conditions. It is assumed that the solvent
velocity is zero and that the electrolyte contains three
charged speciee. The equations are integrated numerically
using a Runge-Kutta technique, and the boundary conditions
are satisfied by trial and error.

R. C. Alkire, B. A, Grens II, and C. W. Tobias [11]
recently presented a more sophisticated treatment of one-
dimensional transport. Developed for a study of porous
electrodes, their analysis is based on a quasi-steady state
formulation of the transport equations in which the solvent
velocity is determined by the rate of dissolution of the
metal electrode. The equations are linearized and then cast
in finite difference form, The resulting system of algebraic
equations is solved numerically. An iterative procedure is
used to simultaneously satisfy both the field egquations and
boundary conditions.

There has been no report of methods for problems in two
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or three spatial variables. The methods -=ported in Refer-
ences [10] and [11] could be gereralized to electrolytes
containing more than three charged species and, without
much difficulty, to include explicit time-dependence. It

ig doubtful, however, that the method used in Reference (10]
can be extended to prcblems in two or three spatial vari-
ables.

[
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IV. COMPUTER PROGRAM DEVELOPED WOR THIS STUDY

[ —

Several specific goals were established to guide the
design of the computer program. The primary goal was that
the program be capable of generating time-dependent soliu-

[

tions to the electrochemical transport equations, using an
arbitrary set of charge-transfer boundary conditions.
Secondly, it was desired that the program be flexible and

U have a broad applicability. While the immediate aim of this
study was to examine transport in crack-like regions, the

[

0 program is designed to solve problems in two spatial vari-
i ables rather than one. Also, the program can be easily spe-

cialized to solve lLaplace's equation or the convective-
ﬁ diffusion equation by the input of aporopriate control char-
acters.

Basically, the program calculates three functions: the
stream function, the dimensionless electrostatic potential,
and the concentration of each dissolved species. In every
case the approach is the same. The controlling differential
equation is replaced by an equivalent difference equation at
i a number of preselected points. The resulting system of

linear algebraic equations is then solved by Gaussian elim-
b ination. Additional subroutines are required to perform
service an” control functions. The most important of these
are the subroutines which establish the size and shape of the

| I

physical re;rion and those in which boundary conditions are
EG calculated and applied.
¥ N The problem to be solved is defined by the input data
% i under the control of the executive portion of the program.
14 First, the initial concentrations and the transport proper-
. ties of the dissolved species are specified. Up to ten
E species may be included in a single problem. The type of

problem to be run (simple diffusion, convective diffusion,
or electrochemical transport) is then determined and the

o e !

S —
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form of the boundary conditions is established. Finally,
the size and shape of the physical domain are fixed.

The physical domain may be hyperbolic, elliptic, pie-
shaped, or rectangular. Other shapes are possible but, as
the progrem is now written, the transformation functions are
limited to those listed. The way the domains transform to a
rectangle is indicated in Fi_ure 2., The numbered points
transform to the numbered corners of the rectangle, and the
lines connecting them transform to straight lines, The size
of the physical domain is determined by two characteristic
dimensions, the length and width. The way these are measured
is also ithown in Figure 2.

One finite dircference grid is used for all the calcula-
tions. The grid spacing is uniform in each of the direciions
€ and 7. The maximum grid size which may be used is 11 by
41, As an example, the grid for a hyperbolic domain is shown
in Figure 3 in both the physical ccordinates and the trans-
formed coordinates. Note that the spacings in the &- and
7-directions are uniform but not equal.

All quantities related to the motion ~f the solvent are
derived from the stream function. The stream function it-
self is calculated using a straightforward finite-difference
analogue to equation (75). The resulting system of alge-
braic equations is solved by Gaussian elimination with back
substitution to provide error control. The solvent velocity
at each grid point is determined from the finite-difference
analogue to equation (79).

The pressure at any point (&,,%) in the solvent can be
determined by integration of equation (21). If @ ig any con-
venient curve connecting the two points (0,0) and (&, 0,)
then

R
(GO
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Pion) = Py + ;F;durm'ﬁlv“}x'd;: (88)

(~0)

..

| { : : :

Pe

W! ravo-.

|4

|

B Pt ey




— s

r— Fmmenry
e s oo

RS
| P

P

-

T P

~49-~

The pressure is calculated at points along the crack center-
line according to equation (88). The appropriate derivatives
are replaced by their finite-difference approximations and
the integration is performed numerically using the trape-
zoidal rule. ' _

From equations (73) and (74), the differential equation
for the dimensionless potential, ¢, in terms of the trans-
formed (.7 )coordinates is

Ny H

£l

inbﬁ(c[vq)) -+ ;Z;D[VZC,: = 0 (89)

-

The potential is calculated using a straightforward finite-
difference analogue to eaquation (89) at each grid point.
The resulting system of algebraic equations is solved by
Gaussian elimination. _

Since there is no explicit time dependence in equation
(89), the potential is established instantaneously. For
problems in electrochemical transport, this initial value
must be calculated before attempting to calculate ion con-
centrations at an advanced time. When the electrolyte is
initially homogeneous, equation (89) reduces to Laplace's
equation.

When charge-transfer boundary conditions are used, the
initial estimate of the boundary conditions is generally in
error. In this case it is necessary to repeat the calcula-
tion of the potential, using the previsus value to obtain an
improved estimate of the potentiai difference across the
electrode-electrolyte interface. Four to six such iterations
are usually sufficient to reduce the error everywhere to less
than one part in ten-thouesand.

At advanced times, the initial estimates of concentra-
tions and potential all contain errors regardless of the
form of the boundary conditions. Thea it is necessary to
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employ an iterative procedure involving all the field equea~
tions and, in some cases, the boundary conditions. This
procedure is discussed more fully after first discussing the
method used to advance the calculation of concentration in
time,

Computation of the ion concentrations at an advanced
point in time is carried out in two stages. The concentra-
tion of ezch species is calculated using a finite-difference
analogue to equation (73). The electronentrality equation
(eqn. 74) is then used to modify *hese values and obtain im-
proved concentraticn estimates.

Initial estimates of the ion concentraztions at a new
roint in time are obtained wusing an ADI (Alternating-Direc-
tion Implicit) technigue., A techrnique of this form wsas
selected because, unlike forward-difference analogues to
equation (73), such techniques are unconditicnally stable.*
There is no 1limit to the size of the time step beyond the
practical limit required to control truncation error. In
addition, ADI techniques are relatively fast as compared to
other stable finite-difference spproximations, e.g., back-
ward-difference methods.

When using an ADI techanique with an equation in two or
three spatial variables, the probler is decomposed intc two
or three problems, each one of which exhibits implicit de-
pendence on only one spatial variable. In the present case
the differential equation depends on the spetial veriazbles,

£ and 7. The finite-difference analogue to this equation
congiats of two parabolic difference equations. One carries
an implicit deperdence in the {-direction, the other in the

* Stability in this contex* refers to the ract that small

errors due to truncat® n avi yvoundoff do rot propagate,
but are atteructed o¢ v :-_rulation is carried furtner in
time.
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7-direction. In cperation, the equations for the {-direction
are solved first; +then the equations for the 7-direction are
solved. This procedure is repeated at succeeding time steps;
hence the name Alternating-Direction Implicit. At each stage
the coefficient metrix for the system of algebraic equations
is tri-diagonal.

A more detailed discussion of the finite-difrerence
analogue used in the solution of equation (73) may be found
in Appendix A. A comprehensive review of numerical metheds
for the solution c¢f parabolic differentiial equations, in-
cluding ADI techniques, is presented in Refereacc [17].

In earlier versions of the program the electroneutral-
ity equation was used only tc generate an equation and bound-
ary conditions for the electrostatic potential. It was not
used explicitly in the program. Although several different
methods were tried, none were satisfactory: all resulted in
systematic but uncontrolled csciilations in the electro-
static potential. While the behavior differed from one
method to another, the oscillations were always accompanied
by oscillations in the ion concentrations and systematic
deviations from electroneutrality.

In the present program, oscillations of the icn concen-
trations and electrostatic potential have been brought under
control by explicit use of the electroneutrality equation.
The method used is redundant. The concentrations of indi-
vidual species are initially treated as being independent,
and escn concentretion is calculated using the ADI technique
discussed above. This yieids one ccncenivration estimate., A
second estimate is obtained using the electroneutrality equa-
tion and the first concerntration estimates for all the other
charged species. These estimates are then combined to yield
an improved estimate.

In a typical problem, the cconcertration cf a particular
ion may be several orders of magnitude less than the total
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ion concentration. For this reason it is necessary to weight
the two concentration estimates rather than take a simple
average. For each ion a weighting function, 8> is computed
according to the formula

By ey e BB

Np
V7 | ~o
L-\IZZICZK Mo N \
Qq = K //( E ): 7. C?mq) (90) |
i={ m=t >
4
C
where -
i’

o; = weighting function for ith charged species

/n = estimate of the concentration of the ith species
at the kth grid point obtained using the ADI
technique

2 * s~y O
. ’ » ]

Np = total number of grid points

L SERgN

N. = total number of charged species

The concentration at each point is then determined

Poiatiad
v

according to the formula

et

° *
Cau = (! - Ou)Cx + O;Cu (91) .-
where [
Cik = 'best' estimate of concentration of ith species
at the kth grid point i
N
L] i [' ] . N
Cou =~z LaZiCu , estimate of the concentration
tot of the ith species at the kth

grid poirt based on the elec-
troneutrality equation.
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The precision of this method is quite good. The error,
€ey» in satisfying the electroneutrality equation may be de-~

'fined as

Ne
Z.Ci / Ne 3 ‘
Cn = MQX{EACL/Z;ZSCLK K’ K= {Np : (92)
that is, the maximum value of the ratio at any grid point
within the electrolyte. On a computer carrying the equiva-
lent of eight decimal digits in single precision arithmetic,
no value of €, greater than & x 10~7 has been observed.
This is the same magnitude as the roundoff error in the cal-
culation of €.

When the concentrations, Ciy(t.), and the dimensionless
potential, ®(%,) are specified at a point in time, t,, the
calculations at a new point in time, (L.+ A% ), are carried
out as follows. First, estimates of the concentrations,

Ci( to+al), are calculated using the value of the potential,
$(l.), to approximate its value at the intermediate time,
(Lo+40t ). These estimates, Ci(t.+ Al ), are then used to
estimate the potential, @(ls+Al ), at the new time. When
necessary, as when charge-transfer boundary conditions are
used, the estimates of quantities at ( L,* Al.) are then used
to revise the boundary conditions. This sequence is repeated
three or four times as may be required to reduce the error to
the desired level. In each such sequence, the latest esti-
mate of the potential at the new time and the value at the
previous time are used to estimate ¢ths%:ﬁ.) in the compu-
tation of the concentrations, Ci(w+ aA%). If more than four
such iterations are required it is usually preferable to re-
duce the size of the time step.

In Appendix A, it is shown that the ADI method is second-
order correct in both time and space when the dimensionless
polential is evaluated at the intermediate pcint in time,
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(tot4at). Because ¢ is not specified a priori, iteration
is required to retain thie second-order -~.irectness. The
iterative riocedure is also effective in controlling other
errors of uncertain magnitude. When, for example, charge-
transfer boundary conditions are used, the boundary condi-
tions at the new time are not known at the beginning of the
time step. Unless the solution technigque leads to simul-
taneous convergence of both the field variables and the
boundary conditions, the theoretical accuracy achievable
using the ADI method cannot be realized.

Boundary conditions for the transport equations are
imposed by straightforward application of the principles
discrssed in Section JI. When charge-transfer boundary
conditions are used, however, the procedure is somewhat
involved and this case deserves some explanation.

For each charge-transfer reaction a kinetic equation,
such as equation (59), must be obtained and includeu in the
program. Storage capacity has been set aside to permit the
use of up to nine sucrn equations. The current density is
calculated for each reaction and for as many boundary points
as may be desired. The calculation is always based on the
best estimates of the concentrations, Ci(1,+al ), and poten-
tial, P(t.+ At ) at the advanced point in time available at
the time of the calculation.

The potential of the metal (electrode) may be indepen-
dently specified. It may be held constant or permitted to
vary with time. As the progrem is now written, however, it
is not possible to impose a constant current conditior on
the electrode (corresponding, for example, to a freely
corroding metal).

The next step is to compute the normal flux for each
species at each boundary point. The computation is performed
according to equation (45) using tne values of the current
density just calculated.
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Finally, the normal dzrivative of the dimensionless
potential,(hn, is calculated at each boundary point accord- 5
ing to the equation ]

S = e

el

Gn = "'LiT (HITOT + V*n) (93)
[‘ where
$n = normal derivative of ¢ at a point on the boundary
Lyor =1
~ u =L ZEDicy
1 vV = B ZDCy

and where the quantities 1,.;, U, and V are all evaluated
at points on the boundary.

The current density, I,y , is taken as the sum of the

partial current densities calculated earlier. The calcula-
tion is always based on the best estima‘es of the concentra-

—

tions, Ci( te+ Al ) at the advanced point in time.
The estimates of the normal fluxes and the normal de-
rivative of the dimensionless potential are used with the

.

finite-difference enalogue to the flux euation to construct
the boundary conditions for each species. As mentioned a-
bove, all these estimates contain errors depending on the

- ==

stage of the computation. This method of constructing
boundary conditions has other drawbacks which are discussed
at the close of this section.

The printed output includes ccordinate data, data rele- . j
vant to the solvent velocity, and transport data. The (&-7)

and (x-y) ccordinates are calculated and printed for =zach
grid point. The stream function and its first derivatives 1
in the &- and 7-directions are also printed. The value of
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the solvent velocity at each grid point is presentec in two
formats. In one the x- and y-components of the velocity are
printed; in the other the magnitude and direction of action
of the velocity vector are presented. The transport data are
printed at time zero and at the end of each time step. These
data include the value of the dimensionless potential and the
values of the coacentrations at each grid point. The partial
current dersity for sach reaction is printed for every bound-
ary point lying on the solid-electrolyte phase boundary.
Finally, the x- and y-components of the total current density
are printed.

The program has been run on a Univac Corporation Model
1108 computer. The running time depends on the number of
dissolved species, the mode of transport, and the rumber of
time steps desired. For a simple diffusior problem with one
dissolved species and charge-transfer boundary conditions,
two to three seconds of computation time are required for
each time step when using four iterations per time step.

For an electrochemical transport problem with three dissolved
species and constant .lux boundary conditions, the computa-
tion time is about fifteen seconds per time step, again using
four iteratiovns per time step. More than half this time is
required for the computation of the electrostatic potential.
The total running time for a wide variety of problems is
typically between five and thirty minutes.

Although the program hes been successfully employed in
the solution of a variety of transport problems, it has two
important limitations. The method used to construct and
apply boundary conditions limits the capability of the pro-
gram. In particular, difficulties are encountered in prob-
lems involving either diffusion-limited partial current den-
sities or extremely large total current densities. These
limitations may be overcome by changes in the subroutine
used to compute the partial current dernsities., That is,
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rather than treating the partial curreat density as a con-
stant, it might be treated as a linear function of both con-
centration and potential, where the linear approximation is
made about the current values of the field variables.

Another limitation derives from the use of the current
equation to compute(hn, the normal derivative of the dimen-
sionless potential., This results in a coupling between
errors in the estimates of’¢w1and the concentrations. 1In
electrochemical transpcrt problems this introduces an insta-
bility which can be controlled only by controlling the size
of the time step. While this method is successful, it is
undesirable because it limits full exploitation of the ADI
technique. It is felt that this limitation can be overccme
by using the sum, L.2 Ji/Di , rather than the current equa-
tion, for calculating dp.
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V. RESULTS

Tne results presented in this section form the major
part of an effort to develop a systematic and coherent view
of the factors affecting solution chemistry and ion trans-
port in crack-like regions. The results are limited to the
beLavior of an electrolyte in a pre-existent notch or crack
on an otherwise smooth electrode surface. For the sake of
clarity and simplicity, attention is focused on a single
reaction and it is assumed thet no homogeiieous chemical re-
action occurs in the electrolyte.

The reaction chosen for study is an oxide-film forma-
tion reaction. Such reactions plasy an iwportant role in
virtually all forms of metal corrosion, The rate of this
kind of reaction cannot be adequately described by a kinetic
equation of the form of equation (59). Under suitable con-
straints, however, behavior similar to that expressed by
equation (59) may be observed (see Appendix B).

It is assumed that the oxide is formed by the reaction

M + 2H,0 == MO, + 4H" + L@~ (94)

For consistency and completeness it is necessary to include
oxide formation by direct reaction with the electrolyte.
Such a reaction is represented by

MO+ HLO == MO, + 2HT (95)

This reaction does nct require the transport of electrons
through the oxide film. The reaction procedes to the right

or left depending only on the concentrations of the dissolved
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species. The reaction rate is independent of the electrode
potential.

The metal oxide is assumed to have zero elextronic con-

ductivity. All current passing through the film is conducted

by the migration of ions or vacancies. As a consequence,

no redox reéction can occur in the system while the oxide -

film is intact. Thus, equations (94) and (95) represent the

complete set of possible reactions occurring at the oxide-

covered metal surface. This assumption provides an accurate

physical description of the oxides of titanium and aluminum,
The rate of reaction (94) can be expressed as

L = Ixo{@XP[’\si] - exp [-gi]} (96)
where
3
Eor
& = & [bn- T L 75] (97)
and where
I, = exchange current density (amp/cmz)
B = high field conduction coefficient (cm)
® = oxide film thickness (cm)

®m = dimensionless potential of metal electrode

¢y = dimensionless potential of electrolyte at
metal-electrolyte interface

€, = Flade potential (dimensionless equilibrium
potential of reaction 94)

7y = surface overpotential

R
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The Flade potential, €,, is taken as the equilibrium
potertisl of reaction (94). Thus, €, is a function of the
hydrcgen ion concentration. It is easily shown that

€ = € + In[ 10% [H*]} (98)
where
€; = standard dimensionless equilibrium potential

of reaction (94)

hydroger. ion concentration (mole/cms)

——
T
5
N

The surface overpotential, 7, , is determined by the rate
of reaction (95). It may be determined from the equation

lMO"" !
I 0 T + IZO-
. = ‘zln{ e T Td'—} (99)

Lot 1s

I,, = exchange current density for anodic partisl
electrode reaction for reaction 95 (amp/cmz)

I,n = erchange current density for cathodic partial
electrode reaction for reaction 95 (amp/cm2)
[Ul = concentration of species U (mole/cm3)

The equilibrium corcentrations, [MO$+] end [HZ], in
equation (99) can be determined from the solubility prcduct
of the hydrated oxide or from the free energy of formation
of the oxide according to reaction (95) [18].

; The kinetic parameters, 110 and 3, appearing in equa-
tions (96) and (97) have been evaluated from data reported
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fcr titanium by H., A, Johensen and co-workers [19]. I, bas
been taken as 1.0 x 107 2 amps per square centimeter and (3
as 16 x 10 Scentimeters. The standerd Flade potential, €,
has been taken as the staniard equilibrium potential for the
formution of hydrated titenium dioxide by the reaction of
titanium with water. The value reported by W. M. Latimer
[13] is ~37.1 (-0.95 volts S.H.E. at 25°C). The equilibrium
concentrations in equation (99) have been evaluated from data
reported by M. Pourbaix [18] for the formation of the hy-
drated form of titanium dioxide by the reaction of hydrogen
and titanyl ions. The values are:

[H;] = 2[M0;+] = 7.57 x 10~ moles per cubic centimeter.

A detailed study of the rate of reaction (95), based on
the equations developed in Appendix B, indicates that the
rate is negligible with respect o the rate of reaction (94)
when the solution pH is greater than minus one. For this
reason and also to standardize the influence of the Mot
iens, the concen*ration of MO™ has been fixed at 10'9 moles
per cubic centimcter and the rate of reaction (95) has been
set equal to zero for the problems in this section. To de-
termine %,, it is still necessary to evaluate the coustants
IZo and 130. There are no data in the literature from which
to evaluate these exchange current densities. The values
10"6 and 10'4 anps per square centimeter have been selected
as being reasonable.

When the rate of reaction (95) is negligible with re-
spect to the rate ¢f reaction (94), the rate of oxide film
growth may be written as

o) o (100)
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where
® = time rate of change of the f£ilm thickness,
(cm/sec)
‘W = molecular weight of the oxide (gram/mole)
o = muss density of the oxide (gram/cm3)
% = Faraday's constant (coul/equiv)

The parameters W and o have been evaluated from the chemi~
cal formula and density of titanium dioxide.

The transport properties summarized below are based on
data contained in References [2C], [21], and [22]. None of
the references is complete; the data reported are from
measurements made in binary electrolytes. The values below
are based on the reported values at infinite dilution. At
concentrations of 0.1 mole per liter, ionic mowilities are
typically about twenty percent less than at infinite dilu-
tion,

9.00 x 1072 (cmz/sec)

DH-‘- =
-5 2
Dyy- = 2.00 x 10 (cm“/sec)
- K -5 2 0D
Dyt = 133 x 10 (cm®/sez)

Reference Problem

At any point in time, the electrolyte composition in &
crack-like region is determined by three factors: the crack
size and shepe, the boundary and initial conditions, and the
transport mode. Each of these ig examined belcw using re-
sults obtained numerically. To facilitate —zomparison of the
results, we begin with a problem thet is relatively simple,
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but illustrates the general characteristics of transport in
crack-like regions. It is a problem of transport by simple
Aiffusion under constant flux boundary conditions in a hy-
perbolic crack.

In this problem, one ion is considered; the effects of
migration and convection are ignored. The ion is the hydro-
gen ion and, from the values listed above, its diffusion co-
efficient is 9 x 10'5 centimeters squared per second. The
governing cifferential equation is the diffusion equation,
recovered frcir equation (73) by setting the potential, ve-
locity, and generation rete equa:i to zero.

It is assumed that the electrolyte is initially homo-
geneous and the composition of the bulk electrolyte does not
change with time. The hydrogen ion concentration at time
zero and at pnints along the crack mouth is 10"7 moles per
liter (pH = 7,. Along the crack walls, the ncrmal flux is
constant and equal to 3.25 x 1(}"9 moles per square centi-
meter. This value is determined from the rate of reaction
(94), the oxide-film formation reaction, using equation (96)
with Qn and ¢, equal to zero, a film thickness of fifty ang-
stroms, and a hydrogen ion concentration of 10"'7 moles per
liter. The normal flux is equivalent to a currert density
of 314 microamps per square centimeter.

The crack is the hyperbclic crack shown in Figure 6.

It is 0.20 centimeters-long and 0.02 centimeters-wide.

The results are summarized in Figures 4 and 5. In Fig-
ure 4, the hydrogen ion concentration at the crack tip is
shown as a function of time. The concentration is expressed
as a pH, the negative common logarithm of the hydrogen ion
concantraticu in mcles per liter. The pH falls quite rapid-
ly. PFroc an initial value of seven, it is less than three
within one second. In ten seconds, it has a value less than
one pH unit lzrger than its final or steady state value.

The steady state is reached in approximately 700 seccnds, or
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about twelve minutes and the crack-tip pH is very close to
one.

The change in concentration with time is accompanied by
a significant change in the shape of the concentration pro-
file. This is illustrated in Figure 5 where the concentra-
tion at points on the crack centerline is shown at three dif-
ferent timer. In order to display all three curves on a sin-
gle graph, the data are presented in terms of the dimension-
less parameter E, defined as

(101)

where

= concentration evaluated at the distance x

O
=
{

from the crack tip
Ci{o) = concentration evaluated at the crack tip

¢{ = concentration at the mouth of the crack (equal
to the concentration in the bulk electrolyte)

The lower curve is a typical short-time concentration
profile. The cencentration gradient is large in the region
near the crack tip, epproaches zerc in the central region,
end increases again near the mouth of the c¢rack. The cen-~
tral curve, corresponding to a later point in time, behaves
gimilarly, but the change in the concentration gradient is
not as extreme as in the lower curve. The upper curve cor-
responds to the steady state. The gradierit is small at the
crack tip end incresses continuously as the distance from
the crack tip increases.

The shape «f the corcentration profile is strongly in-
fluenced by *the crack-like geome'ry. At short times the in-
fluence of the ends is small except in the regions near the
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tip and the mouth of the crack. The flux in the central
region is primarily in the transverse direction. The small
gradient in the central region of the lower curve in Figure
5 is almost entirely due to an increase in the ciacik width
with increasing distance from the crack tip, rather than
significant transport in the longitudinal direction. As

the steady state is approached, the flux in the longitudinal
direction becomes much greater than that in the transverse
direction except in the regicn near the crack tip. There,
both components remain cf the same order of magnitude.

Crack Shape

The effects of changes in ‘L. ‘rack shape are shown in
the next series of problem:. Except for the crack shapes,
the problems are iderntical to the refe.ence problem. One
species, the hydroger ion, is considsred. Transport is by
simple diffusion. The ion flux ncrmal to the electrode-
electrolyte interface is constant and equivalent to a cur-
rent density of %14 microamps per square centimeter. The
bulk-solution pH is seven.

The crack profiles are shown in Figure 6. They are
rectangular, hypervolic, and pie-shaped. All are nominally
0.2 centimeters long by 0.02 centimeters wide. The pie-
shaped crack is one percent shorter than the others because
of the coordinate transformation used. The area cf metel-
electrolyte interface is virtually the same for all of the
cracks; the maximum difference between any two is less than
five percent. The c¢rack volumes vary by a factor of two.

The influence of shape on the behavior with time is il-
lustrated in Figure 7. The crack-tip pH is chown as a func-
tion of time for each of the three crack shapes. For the
pi.e-shaped crack the anproach to steady state is initi- 1ly
somewhat faster, for the rectangular crack the approach is
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initially slower, than for the hyperbolic crack. However,
the times to reach the steady state are virtually the same,
about 700 seconds or twelve minutes. The steady-state
crack-tip pP is approximately one for all three shapes. The
differences are more apparent when the values are expressed
in terms of concentration rather than pH. For the pie-shaped
crack, the steady-state crack-tip concentratior is 0.137
moles per liter. For the hyperbolic crack, the value is
0.099 moles per liter. For the rectangular crack it is

C.079 moles per liter.

The crack shepe influences the form of the concentra-
tion profile as shown in Figure 8. The steady-state councen-
tration along the crack centerline ig plotted as a function
of distance from the crack tip for each of the three crack
shapes. The ordinate in Figure 8 is € as defined by equa-~
tion (101). Thus, only differences in the shapes of the
concentration profiles are shown in the figure.

For the pie-shaped crack, the concentration profile is
very nearly linear, with a slight deviation from lircarity
in the region close to the crack tip.* The concentration
profile is parabolic for the rectangular crack. The proufile
for the hyperbolic crack lies between the other two.

The influvence of time on the shape or the ccncentration
profile is 1iscussed above for the case of the hyperbolic
crack. The behavior is summarized in Figure 5 where the con-
centration on the crack cenierline is shown at three differ-
ent times. Similar curves are rresentea for the pie-shaped
cr.:k in Figure O and for the rectangular crack in Figure 10,

*

The deviation from linearity near the crack tip is caused
by 'chopping off' the tip of the wedge in meking the coor-
dinate transformation. It may be shcwn tuat tne profile is
linear over the eatire crack length only when the crack tip
coincides with the puint of intersection of the extensions
of the two straight sides. (see pages 95 end 99)
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The times are the same as those in Figure 5. As in Figure 5,
the data are presented in terms of the dimensionless param-
eter C in order to display the curves in a single graph.

Comparison of Figures 5, 9, and 10 reveals that the be-
havior with time is similar for all three crack shapes. At
short times there is negligible transport in the longitucinal
direction over most of the crack length. The concentration
gradient is large in the region near the crack tip, decreases
to a small value in the central region, and incresses some-
what near the mouth of the crack. At intermediate times the
behavior is similar, but the change in the gradient over the
length of the crack is less extreme than at the shorter
times. At large times the concentration profiles approach
steady state curves characteristic of {the particular crack
shape.

It is stated above that the concentrastion gradiun* in
the central region of the crack at short times is primarily
due to an increase in the crack width with increasing dis-
tance from the crack tip. This is apparent from the lower
curves (elapsed time equal to 0.164 seccnds) in Figures 9
and 10. In the central region of the bottom curve in Fig-
ure 9, the concentration decreases linearly with increasing
distance from the creck tip. For this crack, the width also
increases linearly. In the central region of the bottom
curve in Figure 10, on the other hand, the concentration re-

mains constant. Since this crack is rectangular, its width
is also cuastant,

Two~Dimensional Effects

The prcblems discussed in this section have been solved
using a twe-dimensional formulation of the transport equa-
tions. For problems involving transport in crack-like re-
gicns, hovever, one might expect transport in the transverse
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direction to play a relatively minor role. This expectation
is based on simple dimensional considerations. For a more
quantitative view, data from the previous set of problems
may be used. The rectangular crack is particularly conve-
nient for this purpose because of its simple geometry.

The transverse concentration gradient varies from zero
along the crack centerline to a finite value at the crack
wall (the metal-electrolyte phase boundary). At the wall,
the transverse gradient is proportional to the normal flux
and, because of the bovundary conditions, remains constant
with time. The longitudinal gradient varies with toth time
and position. The ratio of the two gradients provides a
simple and direct measure of their relative magnitudes.

In Figure 11 the gradient ratio is shown as a function
of time for three points adjacent to the crack wall. This
ratio is defined as the magnitude of the longitudinal con-
centration gradient divided by the transverse concentration
grad.ent. The points are located at distances from the
crack tip equal to one-eighth, one-fourth, and one-half
times the overall crack length.

At short times, transport in the transverse direction
is much greater than in the longitudinal direction, and the
gradient ratios are small at all three points. As time in-
creases, transport in the longitudinal direction becomes in-
creasingly important. At the end of one minute, the gradient
ratios are all of the order of one, and the gradients in the
longitudinal and transverse directions are approximately
equal. As time increases further, the ratio at each point
approaches a steady state value which is a function of dis-
tance from the crack tip. Because the crack width and nor-
mal flux are both constants, the steady state value at each
point is proportional to the total wall area lying between
that point and a point on the crack centerline at the crack
tip. The steady stete values at one-eighth, one-fourth, and
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one-half are, therefore, 3.5, 6.0, and 11.0, respectively.
Only for points close to the crack tip are the transverse

and loﬁgitudinal concentration gradients of the same order
of megnitude. ,

Two-dimensional transport effects may also be viewed
from another perspective. Since there is a concentration
gradient in the transverse direction, the concentration
varies from point to point on a section perperiicular to the
crack axis., As a measure of this variation, consider the
parameter 6&3 defined as

I 1
ney ] Cul) =G

where

Culx) = concentration at a point adjacent to the crack
wall and located at a distance X, from the
crack tip

Cel)

concentration at a point on the crack center-
line and located at a distance X, from the
crack tip

C° = concentration in the bulk electrolyte

When 60w) is one, the concentration g} the given transverse
section is highly non-uniform. When C(X,) is zero, the con-
centration is uniform across the section. Because of the
assumed symmetry about the crack centerline, the numerator

in equation (102) is equal to the difference between the max-
imum and minimum concentrations on the given transverse sec-
tion.

The functions éﬁg) for three transverse sections sre
shown as functions of time in Figure 12. The sections are
located at distances of one-eighth, one-fourth, and one-half
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times the overall crack length. The curves for the sec-
tions at one-eighth and one-fourth are indistinguishable
and are shown as a single curve. The curve for one-half
lies sl.ghtly above the other cur+2,

Initially, the concenrtration changes more rapidly at
points along the wall than at points away from it. There
is a substantial variation in the concentration across the
width of the crack and the function 60@) is close to one.
As time increases, the concentration becomes more uniform
and the variation across the width of the crack decreases.
After one minute, the variation is about one percent. As
steady state is approached the variation becomes quite
omall. It is less than one percent at all three sections.

These results indicate that two-dimensional transport
effects are significant only at short times or at points
near the ende of a crack. The results for hyperbolic and
pie-shaped cracks are similar. In the case of the gradient
ratio, however, they do not admit as simple a geometric in-
terpretation as is the case for the rectangular geometry.

Crack Length

The effect of crack length is illustrated by the next
series of problems. The cracks have hyperbolic profiles and
are 0.0? centimeters wide. The influence of crack width is
considered elsewhere.

Consideration is limited “~ hydrogen ion transport by
simple diffusion with a constant normal flux at the crack
wall. The flux is determined from the rate of the film for-
mation reaction (eqn. 94) with the potertial difference at
the metal-electrolyte interface equal to zero and the hydro-
gen ion concentration equal to 10"7 moles per liter
(pH = 7.0). The cxide film thickness is fixed at fifty ang-
stroms. This corresponds to a normal current density of 314

\
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microamps per square centimeter. The hydrogen ion corco -
tration in the bulk electrolyte is 10"7 moles per liter.

At this point, it is convenient to introduce the notion
of a crack aspect ratio. The aspect ratio will be defined as
the ratio of crack length to crack width where the crack
width is measured at the mouth of the crack. In this prob-
lem set, the cracks have aspect ratios ranging from 1.25 to
40. The profiles of three are shown in Figure 13. In the
upper portion of the figure, th¢ cracks are drawn to the
\ same scale in the length and width directions. In the lower

e == d e
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[] portion, they are drawn with the scale in the width direc-
= tion ten times the scale in the length direction. The cracks

E - have aspect ratios of 1.25, 10, and 40. The crack with the

% ’ agspect ratio of ten is the one used as a reference problem.

i ~ The profiles range from what should probably be called a

‘ | 'dimple' to a truly crack-like geometry.

] The results are summarized in Figures 14, 15, and 16.

E ] In Figure 14, the crack-tip pH is plotted as a function of

k time for each of the geometries shown in Figure 13. Both the
f] time to reach steady state and the steady state concentration
— increase with increasing crack length. Even for the shortest
[ crack (the 'dimple'), the steady state pH is less than three.

_ In Figure 15, the steady-state crack-tip pH is shown as

) a function of crack length. Note that the scale on the ab-

] scissa is logarithmic rather than linear. The curve exhibits

o a slight negative curvature for small values of crack length

but approaches linearity as the crack length increases. The

curvature at small values of the crack length is a result

l both of the function plotted and the method used to define

! the crack domain. As the crack length approaches zero, the
pH at the crack tip assymptotically approaches the bulk solu-

] tion pH. In this case that value is seven. The method used
to define the crack domain end its effect on these results is

|

|

|

discussed below.
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For values of the crack aspect ratio much greater than
one, the curve becomes linear. In this range a doubling of
the crack length reduces the crack-tip pH by 0.6. 1In tae
next section, it is shown that the slope of this curve is
independent of the normal flux.

The steady-state concentration profiles for the cracks
in Figure 13 are shown in Figure 16. The data have been
normalized by plotting on the ordinate the function &, de-
fined by equation (101). A curve has been drawn through the
points for the 0.200-centimeter-long crack. No attempt has
been made to draw curves for the other two geometries, since
this would obscure the data themselves. It may be seen that
all the data very nearly fall on a single curve.

The data for the C.025-centimeter-long crack fall
slightly below those for the other two geometries. Like the
curvature exhibited at small crack lengths in Figure 15,
this is due to the method used tc define the crack domain.
When transforming a crack onto a rectangle in the computer
program, the crack is bounded on the solution side, nol by a
straight lire, but by an ellipse. As a result, the crack
length measured along the crack centerline from the tip to
the bounding ellipse is greater then the length measured tc
the metal surface. TFor the lcnger cracks the difference be-
tween the two is negligible; Dbut for the 0.025-centimeter-
long crack tne difference is about ten percent.

Boundary Conditions

In the rrovlems considered thus far, the flux normal to
the crack wall (metal-electrolyte phase boundary) has been
treatec as constant. In the next series of problems, the
effects of other boundary conditions are examined. The
cracks are (C.200-centimeters long by C.020:~centimeters wide
and hyperbolic in profile. Consideratiorn is limited to
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hydrogen ion transport by simple diffusion.

The concentration dependence of the normal flux is ex-
amined first. The flux is determined from the rate of the
film formation reaction (eqn. 94) with the potential differ-
ence across the metal-electrolyte interface equal to zero,
and the oxide film thickness equal tc fifty angstrcms. The
current density is calculated from equation (96) using the
hydroger ion concentration at points adjecent to the crack
wall., Thus, th2z normal flux varies both with time and posi-
t“ion along the crack wall. The hydrogen ion concentration
in the bulk electrolyts is 107 moles per liter.

The results are surmarized in Figures 17, 18, and 15.
In Figure 17, the crack-tip pH is shown as a function ot
time. The results of the reference problem are included for
comparison. The curve for this problem lies everywhere a-
beve the one for the reference problem. As these resuits
ghow, including the concentration dependence of the normal
flux in the bLoundary conditions reduces the flux and in-
creases the steady state pH. o particular, when the pH at
the metal-electrolyte interface is 2.5, the normel flux is
about one and one-half orders of magnitude less than when
the pH is seven. The magnitude of this effect may vary from
one reaction to another, but the direction is always the
game. An increase in the concentration of a product species
always decreases the reaction rate.

The variation of the steady state concentration aiong
the crack centerline is shown in Figure 1&. The results ob-
tained for the reference problem are also shown for compari-
son, The data have been normalized by plotting as the ordi-
nate ths function C defined by equation (1G1). The concen-
tration profile for this problem is very nearly the same as
that for the reference problem. The former, however, lies
gverywrere above the latter.

Because the flux normal to the crack wall decreases as
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the hydrogen ion concentration increases, it is greater at
the mouth of the crack than et the crack tip. This is shown
in Figure 19 where the normal flux is plotted as a function
of distance from the crack tip at steady state. For conven-
ience, the flux is expressed as a current density. The flux
at the mouth of the crack is more than eight times greater
than at the crack tip.

When the longitudinal concentration profile is compared
with one obtained for a constant value of the normal flux,
as in Figure 18, it may be seen that the effect of the veri-
ation in the normal flux is to reduce the magnitude of the
longitudinal concentration gradient near the crack tip, and
to increase it near the mouth of the crack. The concentra-
tion profile for product species obtained using charge-
transfer boundary conditions is always found to lie above
& that obtained using constant flux boundary conditions.

The gsme boundary conditions at the crack wall have
been used to investigate the effect of changes in the con-
centration of the bulk electrolyte. The concentration de-
pendence of the normal flux is considered but the oxide-film
thickness is fixed at fifty angstroms. The potential dif-
ference at the interface is set equal to zero.

The results are summarized in Figure 20. Here the pH
at the crack tip is shown as a functior of the pH in the
bulk electrolyte. There are two distinct regions in the
figure. In the first, the pH in the bullk electrolyte is
small and the crack-tip pH is approximately equal to the pH
in the bulk electrolyte. In this rrgion, the concentration
difference between the tip and the mouth of the crack is
much less than the concentrstion at the mouth of the crack,
The variation in the pH along the length of the crack is
negligible and the normal flux is essentially constant every-
where along the crack wall,

In the second regiou, where the pH in the bulk electro-
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lyte is large, 'he pH at *the crack tip is virtually indepen-
dent of the pH in the bulk electrolyte. In this region, the
difference between the concentrations at the tip and the

mouth of the c¢rack is much greater than the concentration at
the mouth of the crack. Thus, the hydrogen ion concentration
in the bulk electrolyte may be treated as being zero, and the
variation in the normal flux along the crack wall is virtually
the same as that shown in Figure 19,

In the final problem of this set, the effects of btoth
film growth and concentration are considered. The normal
fiux is determined from the rate of the oxide-film formation
reaction (eqn. 94) with the potential differencre across the
metal-electrolyte interface equal to zero. The hydrbgen ion
concertration in the rate equation (eqn. 96) is taken as the
concentra’ion in the electrolyte at points adjacent to the
crack wall. The initial film thickness is taxen as fifty
angstroms at every point on the boundary. The film thick-
nese at each boundary point is ther obtained by numerical
integration of equation (100).

The results are summarized in Figures 21 and 22. In
the upper portion of Figure 21, the crack-tip pH is shown
as & function of time. For comparison, a curve showing the
response in the absence of film growth (corresponding to the
upper curve in Figure 17) ic also shown. In the lower por-
tion of the figure, the film thickness at the crack tip is
shown as a functicn of time.

At very short times, there is no sensible change in the
oxide-film thickness and the pH versus time curve coincides
with that obtained using a constant film thickness. With
inereasing time, the thickness of the oxide film increases,
decruesing the hydrogen ion flux into the crack. The con-
centration at the crack tip then beromes less (the pH great-
er) t-.» ‘a tue comparable probler. with no film growth.
Citinued f£ilm srowth recults in the mest striking feature
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(f the pH-versus-time curve. At about one hundred seconds
the curve exhibits a minimum after which the pH rises con-
tinuously.

This calculation was terminated after an elapsed‘time
of about three thousand secords or fifty minutes (calculated
time, not computer running time) éo ro detailed information
was obtained on the behavior at large times, It should be
chserved, however, that the concentration in the crack caa-
not attain a steady state value unless the rate of oxide
film growth beccmes zero. Thus, the pH will continue to
rise toward he bulk electrolyte value (in this case seven)
unless some other reaction intervenes or the potential dif-~
ference across the metal-electrolyte interface is reduced to

ts equilibrium valvue.

For the first vroblem in this set, the oxide-film
thickness was fixed at fifty angstroms. Under this con-
straint, the normal flux was Tound to exhibit considerable
variation along the length of the crack. It is shown in
Figure 19, for example, that the normal flux near the mouth
of the crack is about eight times greater than at the crack
tip. When the influence of oxide tilm growth is considered,
however, it is found that the no.mal flux at the crack wall
is very nearly ccnstant, In Figure 22, the normal flux,
expressed as a current density, is shnwn as a function of
distance from the crack tip. The variation in the film
thickness alorg the length of *he crack is also shown. The
difference in the normal flux between the tip and the mouth
of the crack is less than ten percent. The greater thick-
ness of the film near the mouth of the crack tends to com-
pensate fcr the lower ion concentration in this regiocn.
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Convective Transport

Thus far, our attention has becn restricted to problems
involving tramnsport by simple diffusion. The effects of
convection and migration have teen ignored. We now wish to
conslider these other modes of transport. The effects of
convective tronsport are considered in the next series of
problems. Transport by migration is considered in the fol-
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When a structural member containing a crack is loaded, T
the cracx opens and the volume of the crack increases. The :
crack volume likewise increases as a crack grows or length-
ens., In either case, some of the electrolyte is drawn into
the crack from the bulk solution in the same way liquid is
drawn into a suction pump. Our interest here is in the
effect of such flow on the composition of thz electrolyte
in the crack.

To be more explicit, consider the pie-shaped crack
shown at the top ol Figure 23. If the crack deforms in such v
a way as to remain pie-snaped, the straight sides must remain !
straight. In this case, it is converiert to identify two
modes of crack deformation. For the mode identified as
'crack growth' in Figure 23, the sides of the crack sre
displaced vertically with no change in the crack angle. The
ratio of the vertical displacement of a point on the crack
wall to the horizental displacemen’ of the crack tip is a
constant for all points on the crack wall. For tre mode
identified as ‘creck opening' in Figure 2%, the crack angle
incresses with no change in the displacement of the crack
4ip. 1In this case, the displacemert of a poirt or the crack
wvall is proporticral to its distance from the crack tip.

Any crack deformation, catisfying the requirement that the
pie-shaped crack remain pie-ghaped, can he expresced as a
linear combination or these two deformetion modes.
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A closed-form solution for the solvent velocity in a
pie-shaped crack has been obtained using the Stokes-flow
approximation to the Navier-Stokes equations. When the
crack angle, 200 , is small, the solution may be expressed
approximately as

v = -T[n (%) +20][1 - (%)2] (103-a)
. 3
U = %[}t(%) + ('1][3(%}‘(%)] (103-b)
where

Ui = velocity component in the radial (longitudinal)
direction {cm/sec)

Y, = velocity component in the tangential (transverse)
direction (cm/sec)

o = crack half angle (radian)

Q, = crack length (cm)

& = time rate of chenge of crack half angle
(radian/sec)

Q = time rate of change of crack length (cm/sec)

A.© = coordinate of a point (cm, radian)

The siream lines corresponding to the velocities in
equations (103) are shown in the central portion of Figure
23 for the two modes of crack deformetion., In the lower
portion of the figure, the magnitudes of the centerline
velocities are shown as functions of the distance from the
crack tip.

For both deformation modes, the solvent flew is towaird
the crask tip. At a given distance from the crack tip, the
velocity in the radial direction is a maximum on the cracx
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centerline. For the 'crack opening' mode, the magnitude of
the solvent velocity increases linearly as the distance from
the crack tip increases. For the 'crack growth' mode, the
solvent velocity is independent of the distance from the
crack tip.

The results obtained for the pie-shaped crack prcvide
e good approximaticn to solvent motion in a crack-like re-
gion. For the numerical work, however, a different geometry
has been used. This geometry is somewhat lese restrictive
and of more direct physical significance. The configuration
adopted is shown inr Figure 24. It consists of a double
edge-notched tensile specimen 2.40 centimeters wide. The
eide notches are 0.20-centimeter-long by 0.02-centimeter-
wide hyperbolic notches. The deformation of the crack walls

specimen containing deep hyperbolic notches. The rate of
crack deformation is found to be directly proportional to
the especimen loading rate.

In this series of problems consideration is limited to
transport of the hydrogen ion and the normal flux is con-
stant at every point alorg the crack wall. The flux is de-
termined from the rate of the film formation reaction
(eqn. 94) with the potential difference at the metal-elec-
trolyte interface equal to zero and the hydrogen ion con-
centration equal to 10"'7 moles per liter. The oxide-film
thickness is fixed at fifty angstroms. Under these condi-~
tions the current density normal to the crack wall is 314
microamps per square centimeter. The hydrogen ion concen-
tration in the bulk electrolyte is taken as 10"'7 moles per
liter.

The solvent velocity is calculated using a prescribed
specimen loading rate and the initial specimen geometry.
The crack dimensions are assumed to remain constant with
time. In reality, while the length of the crack is not
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affected by the loading, the crack width increases with

time. The effect of changes in the crack width, ignored

in this set of problems, is examined below.

% In Figure 25, the magnitude of the solvent velocity

r along the crack centerline is shown as a function of dis-

tance from the crack tip. The nominal net-section strain

rate is 10"6 centimeters per centimeter per second. The

] velocity is for all intents and purposes a linear function

of distance from the crack tip. The velocity is zero at

the crack tip and a maximum at the mouth of the crack. At

the“mouth of the crack, the centerline velocity is 3.34 x

10™° centimeters per second. Since the rate of deformation

of each point along the crack wall is a linear function of

f the nominal strain rate, the velocity at any other strzin

’ rate may be determined by simple proportioning from this
curve,

With the nominal net-section strain rate equal to 10~
centimeters per centimeter per second, the difference be-
tween the results obtained with convective transport and
those obtained in the reference problem is barely percepti-
ble. With the strain rate increased to 10-4 centimeters per
centimeter per second, a difference is readily apparent.

The results obtained at the latter strain rate are summarized
in Figures 26 and 27.

In Figure 26, the crack-tip pH is shown as a function
of time. The solid curve corresponds to the results for
the convective-diffusion problem at a nomiral strain rate

E of ‘IO—4 centimeters per centimeter per second (maximum

% solvent velocity of 3.34 x 167> centimeters per second).

| A broken curve, illustrating the behavior observed for
the reference problem, is included for comparison. The
results for the two probleme are virtually identical for
times less than seventy seconds, about one-tenth of the
time required to reach steady state. For times grester than
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seventy seconds, the crack-tip pH for the convective trans-
port problem is somewhat greater than that for the reference
problem. At steady state, the icn concentration at the crack
tip for the convective transport problem is about twenty-five
percent less than that for the reference problem.

The steady state concentration along the crack center-
line is shown as a function of distance from the crack tip
in Figure 27. The results of the convective transport prob-
lem and the reference problem are both shown in the figzure.
The data for the reference problem have been normalized irn
the same way as in previous figures. The furction plottad
as the ordinate is C defined by equation (101). The data
for the convective transport problem have been normalized in
the same way except that the value C(0) in the denominator
in equation (101) has been taken as the value obtained in
the reference problem. In other words, in normalizing the
data both sets have been divided by the same number.

The effect of the solvent motion is to reduce the mag-
nitude of the concentration gradient and thereby to reduce
the concentration at every point within the crack. The in-
fluence on the concentration gradient is the greatest at the
mouth of the crack where the solvent velocity is a maximum.
The influence decreases as the distance from the crack tip
decreases and the solvent velocity decreases.

Crack width

As mentioned above, the effec: c¢f changes in the crack
geometry with time was ignored in generating the results
summarized in Figures 26 and 27. A substantial change in
the crack dimensions may occur, however, in times of the
order of the time required to reach steady state, particu-
larly at the higher strain rates. For example, when the
nominal net-section strain rate is constant and equal to




e e s —H

-82-

10'4 centimeters per centimeter per second and when the
specimen configuration is that shown in Figure 24, the
crack width increases from an initial value of 0.02 centi-
meters to 0.26 centimeters in 700 seconds. Thus, in the
time required to reach steady state the crack width would
have increased by a factor of thirteen.

The significance of such a change may be judged from
the results of a set of problems run for hyperbolic cracks
of various widths. The cracks are all 0.20 centimeters
long. Transport is by simple diffusion. The boundary con-
ditions are identical to those used in the reference problem
and in the convective-diffusion problem.

The resuits are summarized in Figure 28. The steady
state concentration at the crack tip is expressed in moles
per liter and plotted as a function of crack width. For
comparison with the convective-diffusion problem discussed
above, the steady state concentration for the crack 0.20-
centimeters long by 0.02-centimeters wide loaded at a rate
of ‘IO'4 centimeters per centimeter per second is shown in
the figure. The times required for such a crack to attain
the same width as the widths of the cracks included in this
problem set are also shown.

The steady state concentration at the crack tip is re-
duced by a factor of about one-half each time the crack
width is doubled. By comparison, had the cirack width in the
convective-diffusion problem been &#llowed tc increase rather
than being fixed at 0.02 centimeters, it would have doubled
in about eixty se.onds or less than one-tenth of the time
required 1o reach steady state.

These results indicate that gecmetry exerts a much
strongzer influence on composition than does solvent motion.
This conclusion is strengthened by the results mentioned a-
bove for & loading rate of 10"6 centimeters per centimeter
per second. At this loading rate, the effect of convection

e em w = =5
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was barely perceptible. The difference between the concen-
tration calculated for this problem and that obtained for
the reference problem was everywhere less than half of one
percent. Nevertheless, for times of the order of the time
to reach steady state, the width of this crack should have

more than doubled, reducing the concentration by more than
one half,

Migration

In the problems discussed thus far, transport by migra-
tion has becn ignored. The results are, therefore, strictly
valid only when the electrostatic potential is everywhere
diminishingly small. One indication of the range of appli-
cability of these results is provided by the next problem.

A broader view is provided by the analytic results presented
in the next section.

The problem considered here is one of electrochemical
transport in a rectangular crack 0.20-centimeters long by
0.02~centimeters wide.

The choice of the rectangular crack
shape is based on the results presented above on the effect
of crack shape and to facilitate a later comparison with an
analytic solution to a similar problem.

The electrolyte consists of three ions: the sodium
ion (Na%), the chloride ion (C17), and the hydrogen ion (xh).
The bulk electrolyte is a 0.6-mole per liter sodium-chloride
solution with a pH of seven,
electrolyte is the same.

At the crack wall, the normal fluxes of both the sodium
ion and the chloride ion are zero.

The initial composition of the

The hydrogen ion flux is
constant and has the same value as in the reference problem.
That is, the value it determired from the rate of reaction

(94) with the potential difference across the metal-electro-
lyte interface equal to zero, the pH equal to seven, and the
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oxide-film thickness equal to fifty angstroms. Therefore,
the normal current density is 314 microamps per square cen=-
timeter.

The behavior with time is summarized in Figure 29. Two
curves are shown, The first shows the variation in the
crack-tip pH with time. Perhaps the most striking aspect of
this curve is its similarity to the curves obtained in ear-
lier problems. It exhibits no new or unusual features.

The second curve in Figure 29 illustrates the behavior
of the electrostatic potential, measured at the crack tip,
with time. Since the electrostatic potential is zero at the
mouth of the crack, the potential at the crack tip is numer-
ically equal to the potential drop along the length of the
crack. Note that this potential drop is always positive.
That is, it is always of a sense to carry some portion of
the total current.

At short times, the gradient of the hydrogen ion con-
centration is small, and nearly all of the current is carried
by the migratiorn of ions in the electrostatic field. The
electrostatic potential remains close to its initial value
of about nine millivolts. As the hydrogen ion concentratvion
reaches a value of about one percent of its steady state
value, the potential begins to decrease rapidly. As the hy-
drogen ion concentration increases further, an increasing
fraction of the total current is carried by hydrogen ion dif-
fusion and the elecirostatic potential continues to drop. At
steady state, a substantial fraction of the total current is
carried by diffusion and the electrostatic potential stabi-
lizes at about 1.5 millivolts. This is approximately one-
fifth cf the initial value.

Two unusual features of the potential versus time curve
should be mentioned. At short times, the computed value of
the potential rises tefore it starts to fall again, intro-
ducing a 'bump' in the curve. This 'bump’' is an artifasct
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caused by truncation error in calculating the boundary con-
ditions. It does not represent the true behavior of the
system, so the solid curve is not drawn through this data.
At steedy state, the calculated values are erratic. Varia-
tions in the computed values as large as eight percent may
be observed. This behavior also derives from the method
used to construct boundary conditions. As indicated in Sec-
tion IV, it is planned to modify the routines used in the
computation of the boundary conditions. The planned mod.i-
fication should eliminate both of these defects.

The influvence of migration on the behavior of the hy-
drogen ior may be judged by comparing the pH-versus-time
curve in Figure 29 with the upper curve in Figure 7. That
curve was obtained using the same crack geometry and bound-
ary conditions as the present problem, but with transport
by simple diffusion only. The two curves are virtually
identical. There is a difference between the two, but the
difference is extremely small when the concentrations are
expressed in terms of pH.

The effect of migration is shown mocre clearly in Figure
30. Here the steady-state hydrogen ion concentration along
the crack centerline is shown as a function of distance from
the crack tip. In &ddition to the results for this problem,
the results obtained fc¢ -+ transport by simple diffusion are
reproduced from Figure 10. The effect of migration is to
reduce the hydrogen ion concentration everywhere within the
crack. However, the reduction is quite small. In the pres-
ent case, transport by both migration and diffusion, the
concentration is about three percent less than in the case
of transport by diffusion only.

The influence of the potential gradient on the salt
ions is summarized in Figures 31 and 32. In Figure 31, the
changes in the concentrations of all three ions are shown as
functions of time. In every case, the guantity plotted on
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the ordinate is the difference beitween the concentration at
the crack tip and the initial concentration in the electro=-
lyte. Alternately, since the initial concentration of each
ion is the same as its concentration in the bulk electrolyte,
the ordinate may be viewed as the total concentration differ-
ence over the length of the crack.

The curves have several interesting features. Perhaps
the mest obvious is the way chenges in the ion concentrations
are coupled by the requirement of electroneutrality. The in-
crease in the hydrogen ion concentration is accompanied by an
increase in the concentration of the negative salt ion (C17)
and a decrease in the concentration of the positive salt ion
(Na+). Iy addition, the hydrogen ion reaches a stable
steady-state value in less time than does the positive salt
ion. The ions do not respond with a single time dependence.
This is, perhaps, not surprising. The diffusion efficients.
of the three ions are unequal, that of the hydrogen ion being
the greatest and that of the positive salt ion the least.
However, this behavior is in contrast to that of the binary
electrolyte where the system responds with a single time-
dependence.

The difference in the transport properties of the two
positive ions is also reflected in the behavior of the nega-
tive salt ion. At first, the concentration of the negative
ion incrcases with time. Then, a point is reached after
which the concentration of the hydrogen ion remains essen-
tiaily unchanged, while the concentration of the positive
salt ion continues to decrease under the influence of the
electrostatic potential. The concentration of the negative
ion then pzsses through a maximum and subsequently decreases.
Finally, the concentration of the negative salt ion approaches
a steady state value frcm above.

The steady-state concentration profiles are shown in
Figure 32. There are three curves, one for each ion.
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Plotted on the ordinate is the difference between the con-
centration at a point on the crack centerline and the con- :
centration in the bulk electrolyte. The abscissa is dis- ‘
tance from the crack tip. The concentration profiles are

all very nearly parabolic., As required by electroneutrality,

the sum of the ordinates is everywhere equal to zero.

The spatial variation of the electrostatic potential is
illustrated in Figure 33. The initial and steady state
values along the crack centerline are shown as functions of
distance from the crack tip. The shapes of the curves are
nearly the same. The initial profile is parabolic and the
final profile is very nearly parabolic as well. However,
the magnitude of the poteniial at steady state is much less,
five times smaller, than 1t is immediately following immer-
sion of the specimen.

In Figure %4, the current density measured along the }
crack centerline is shown as a function of distance from <the ]
crack tip. Since the normal flux at the crack wall is con-
stant, this curve is invariant with *ime. The curve is
linear over most of the crack length. Near the mouth of the
crack, however, there is a moderate deviation from linearity
caused by two-dimensional *‘ransport effects.

At elapsed times which are small with respect to the
time required to reach steady state, essentially all of the
current is carried by the migration of ions in the electro-
static field. On the other hand, at times of the order of
the time to reach stecady etate, a substantial portion of the
current may be carried by ion diffusion. There is no unique }
method for determining the fraction of the total current '
carried by diffusicn as opposed to the fraction carried by
migration. But, we can obtain a measure of this fraction in
a way that 1s reasonable and makes some physical sense.

One way to estimate the Fraction of the total current
carried by diffusion is simply to partition the total flux
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of each ion into a diffusion flux and a migration flux, and
consider the ratio of the current carried by the diffusion
fluxes to the tetal current. Thus we might define

!
I
Po= ‘”Ql/lﬁﬁ-bl (104)
where
[ v \ |
L = ‘B‘VV\LJ ziDt'.Ci/‘ (105-a)
/ 7
I, = ‘3(\‘Z\ZszC[VT>> (105-b)

7

The partitioning of the current might also be reasonably
apprecached from another point of view, At steady state, the
total flux of both salt ions must everywhere be equal to
zero. This fcllows from the boundary conditions and conser-
vatior of mass. Thus, the current must all be carried by
hydrogen ions, and we might consider the fraciion of the
total current carried by hydrogen ion diffusion, namely

A

P, = -L/IR + 'I'ii (106)
where
Ip = -~3Z:D0\Cu (107)

These two measures of the fraction of the total current
carried by diffusion, P1 and P2, are chown in Figure 34.
The fractions have been evaluated from the steady state data
shown in Figures *2 and 33, and are plotted as functions of
distance rrom the crack tip. The vaiue of P1 is everywhere
less than P:, but both measures indicate that a greater
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fraction of the total current is carried by diffusion as the
distance from the crack tip increases. Also, both measures
indicate that a greater portion of the total current is
carried by diffusion than is carried by migration.
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VI. DISCUSSION

The results presented in the last section covered a
broad range of geometric and kinetic variables. The effect
of each was examined separately and in some detail. In this
section a more general perspective is adopted. First, based
on the numerical results of the last section, the character-
istics of transport in crack-like regions are summarized.
Consideration is then centered on the 2xtent, if sny, to
which this characterization is of more general validity.

Like other computer programs, the program developed in
this study is capable of providing detailed answers to par-
ticular questions. It is ill-suited to and inefficiently
employed in a parametric analysis of a wide range of a large
number of variables. Therefore, it will be convenient in
this discussion to draw upor the one-dimensional steady-state
transport analysis developed in Appendix C. While its formu-
lation constrains the application of this analysis, it has
the important advantage that many useful results may be ex-
pressed in a simple, closed form.

From the results of the previous section, the following
general observations can be mede:

1) Time - The initial rate of change of the crack-tip pH is
quite large. For times greater than or equal to the
diffusion time,* however, the time rate of change of
the pH is small regardless of the form of the boundary
conditions. Referring to Figure 4, for example, with
a constant normal flux at the crack wall sufficient to
produce a steady-state crack-tip pH equal to one, the

*

The diffusion time is defined here as (a2/D) where a is
the crack length and D is the diffusion coefficient of the
disrolved species of intersest.
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crack-tip pH is less than five in ore millisecond and
less than two in ten seconds. These times should be

8 compared to the diffusion time of 444 seconds or the

1 time to reach steady state of 700 seconds.

[ Under more complex boundary conditiors, the steady
state may not be attained irn times of the order of the

diffusion time. Shown in Figure 21, for example, are
results obtained using charge-transfer boundary con-
ditions with oxide film growth. Even here, the time-
rate-of-change of the pH is small for times of the

‘] order of the diffusion time and larger. At the end of

S one hour, for exemple, the pH differs by less than one
2 unit from the value at one minute,
3 While this ohservation has been expressed in terms
: of the pH, it applies equally to the common logarithm

; 1 of the ccncentration of eny dissolved species. It is

' ) asserted, not that changes in concerntration with time

i J are insignificant, but that the order of megnitude of

the concentration is slowly time-varying over most of
the observable time domain.

2) Two-Dinensional Transport Effects - The influence of

transport in the transverse direction as compared to
the longitudinal direction may be judged from the var-
iation in the electrolyte composiiion across the width
of the crack. If a variation of less than one percent
is regarded as negligible, the effects of transport in
the transverse direction are negligible at times great-
er than the diffusion time for all cracks having an
aspect ratio greater than three. At large times end

in regions near the ends of a crack, composition var-

iations due to transport in the transverse direction

mey be observed, but these are small as compared with
the variations along the length of the crack.
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3) Crack Geometry, Shape - The shape of a crack has a modest
but definite effect on the behavior of the electrolyte
contained within it., The shape affects both the magni-
tude of the crack tip concentration and the shape of
the longitudinal cconcentration profile. For example,
under identical corstant flux boundary conditions, the
steady-atate concentration difference between the tip
and the mouth of a pie-shaped crack is nearly twice as
great as for a rectangular crack having the same length
and width. For the same boundary conditions, the
steady-state longitudinal concentration profile is
approximately linear for the pie-shaped crack and para-
bolic for the rectangular crack. The results for a hy-
perbolic crack lie between those for the other two
crack shapes.

4) Crack Geometry, Length and Width - The geometric param-
eters having the greatest effect on electrolyte compo-
sition are the length and the width of the crack. The
results for hyperbolic cracks with constant flux bound-
ary conditions may be cited as an example. To a good
first approximation, the steady-state concentration
difference between the tip and the mouth of the crack
is found to be proportional to the square of the crack
length and the reciprocal of the crack width (see eqn.
111),

5) Boundary Specification Along the Crack Wall - The form of
the boundary conditiors along the crack wall (metal-
electrolyte interface) may have a significant influence
on the concentration of an i1on as measured by its aver-
age or maximum value. It has little effect, however,
on the chape of the concentration profile. This is
illustrated, for example, by the results shown in
Figures 18 and 19.
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6) Composition of the Bulk Electrolyte - The electrolyte
composition in the bulk solution may bear no direct
relation to that within a crack-like regicn. Tais is
illustrated by the results shown in Figure 20.

7) Transport by Convection - The solvent motion associated
with crack opening or 'yawning' has a negligible in-
fluence as compared to the effects of crack geometry
and transport by simple diffusion.

8) Transport by Migration - Transport by migration in an
electrostatic field appears to have little influence
on the concentration of the product species. The
principal effect of migration is to altier the concen-
trations of the salt ions in accordance with the re-
quirement of electroreutrality.

The first two observations are perhaps not surprising
since they are consisten’ with simple dimensional arguments.
The remainder are based solely on numerical results, those
presented in the last section and many others not shown ex-
plicitly. They point to the conclusion that the factors
which exert a primary influence on the concentration of the
ith species in a creck-like region are: Ji’ the mean value
of the rormal flux of the ith species; o, the crack length;
and b, the crack half-width. Other factors, such as crack
shape or transport mode, appear to exert a secondary influ-
ence.

While the above ¢bservations represent an accurate sum-
mary of the numerical results, the data upon which they are
based is limited. The last observatic:: in particular is
besed on the results of a single problem. There remains the
question, therefore, of whether these observations are gen-
erally applicable to transport in crack-like regions.

To answer this question requires rfurther information.
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Rather than generate additional numerical results, it is more
convenient to exploit the observation that composition varia-
tions in the transverse crack direction are smell with re-
spect to variations in the longitudinal direction. This
suggests that a crack-like region may be treated with rea-
sonable accuracy as a one-dimensional continuum. The reduc-
tion of the problem to dependence on one spatial variable
results in a simplified set of governing differential equa-
tions as shown in Appendix C. The advantage of this approach
is that closed-form solutiuns may be obtained for a number of
cases important to our discussicn.

Simple Diffusion - Dominant Effects

Suppose we begin by looking at transport by diffusion
only. Consider a single species, Si’ in a rectangular crack
with a constant flux, J?, normal to the crack wall. From
equations (C-3a, -8 and -9) in Appendix C, the steady state
concentration is

Iy, ., A
Ci-C) = (f,_.;._zly\az—rz, + (010 (108)

where
(; = concentration of ith dissolved species (mole/cm3)

({ = concentration of ith species in the bulk
electrolyte (mole/cms)

J'= normal flux of ith species at the crack wall
(positive inward) (mole/cm-sec)

D[

diffusion coefficient of ith species (cm?/sec)

crack lergth (cm)

)
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b = crack helf-width (cm)

X = distance from the crack tip (em); [0 ¢ x « a]

A similar result may be obtained for transport by dif-
fusion within a pie-shaped crack. From equations (C-3b, -8
and -9) in Appendix C with a constant normal flux, J?, the
steady-state concentration of the ith species is

(3N o N sy ‘
(G- ) = (T jlh+ O b%la-x) + eavt + (ol - 13\n(—’-&;]

(109)

where
€ = a number between zero and one, typically small

X = distance from the point of intersection of the
extensions of the straight sides of the crack (cm)
[ea & na Q]

It should be noted that the normal flux, Jg, appearing
in equations (108) and (109) is taken as positive for a mass
flux INTO the crack. Also, in obtaining equation (109), the
crack tip is located a distance €a. from the point of inter-
section of the extensions of the straight sides of the crack.
This, in general, the width of the crack at the crack tip is
non-zero and the crack profile is similar to that of the pie-
shaped crack shown in Figure 6.

F1m equation (108), the steady-state concentration pro-
file for a rectangular crack is parabolic. From equation
(109), the steady-state concentration profile in a pie-shaped
crack is very nearly linear. The deviation from linearity
is significant only for values of x close to €0 when the
second term in the brackets on the right-hand side of equa-
tion (109) is no longer negligible. When €, in equation
(109), is zero, the width of the pie-shaped crack is zero at
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the crack tip, and equation (109) reduces to
. A vy
(G-C) = (Lgl)"/-i-*' /by (2~ x) (109-a)

The steady stete concentration is a linear function of
distance from the crack tip.

The steady-state concentration difference between the
tip and the mouth of the crack is obtained by setting x
equal to zero in equation (108) or (109-a). For a rectan-
gular crack,

: ' ot
AC; = (Ci-CD)| | == £z al (110-a)
For a pie-shaped crack,
h\ JYL T ‘—-‘-\27
A = (-] = 2V 0/ (110-b)

When the aspect ratio, (a/b), is much greater than one,
the relations expressed by equations (110) may be expressed
approximately by

n

AC; = u[;—J{'s] (111)

{

™

where
O = a shape factor, and
o =1, for a rectangular region

X = 2, for a pie-shaped region
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Equatior (111) is entirely consistent with ‘he results
obtained numerically for transport by simple diffusion with
congtant flux boundary conditions. The steady-state concen-
tration difference between the tip and the mouth of a crack
is directly proportional to the normal flux and to the square
of the crack length. It is inversely proportional to the
diffusion coefficient and the width &t the mouth of the
crack., The constant o, viewed as a shape factor, will have
a value between one and two for all crack geometries likely
to be found in nature.

Boundary Conditions

While equation (111) adequately summarizes the results
obtained for siuple diffusion with constant flux boundary
conditions, it does not explain the behavior observed with
charge-transfer boundary conditions. (The important feature
of such a boundary specification is that the reaction rate,
or reaction current density, changes with changes in the
concentrations of the dissolved species. For the reaction
used in the rurerical calculations, the hydrogen ion was the
only dissolved species affecting the reaction rate and its
normal flux was directly proportionel to the reaction current
density.) Since the hydrogen ion concentration was a func-
tion of distance from the crack tip, one would expect its
normal flux to likewise be a function of distance and this
was in fact observed. With the normal flux varying from
point to point along the crack wall, one would further ex-
pect the shape of the concentration profile to differ from
that of a similar curve obtained using constant flux bound-
ary conditions. This was also observed, but the difference
was small (see Figure 18).

At thie point our concern is not with the validity of
the numerical results. The quecstion is, do thnse resulte
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reflect the particular kinetic formulation used in that
work, or does the form of the boundary conditions generally
have a small effect on the shape of the concentration pro-
file? Here, as above, the one-dimensional transport analy-
sis developed in Appendix C is useful in framing an answer.
Consider a single dissolved species, Si' contained in a
rectangular crack and assume that transport is by simple
diffusion. From egquations (C-8 and -9) in Appendix C, the
steady state concentration is

. o
(C-C) = %L.{Jf(a—x) + %\x[\ol“’(mdg]dg} (112)

where

; = normal flux of the ith species at the crack
tip (mole/cmz—sec)

Jiw = normal flux of the ith species along the crack
wall at a distance, x, from the crack tip
(mole/cm“-sec)

€.Y = dummy variables

Note that both fluxes are positive when they correspond to
flows INTO the crack. Also, when the metal-electrolyte

interface is everywhere homogeneous, Jz is equal to Jg(o).

The normal flux, J:, may be treated two different ways.
It may be viewed either as an explicit function of the dis-
tance x or ac a function of concentration (an implicit

function of x). Neither approach is completely satisfactory.

When the flux is treated as a function of concentration, it
is highly desirable (although, perhaps, not absolutely
necessary) that the functional form used be consistent with
gome charge-transfer kinetic relation. Normally then, the
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first step is to specify a charge-trensfer reaction and
kinetic equation. Once this is done, the functional rela-
tion between normal flux and concentration may be determined
and the result used with equation (112) to determine the
concentration. Unfortunately, it is usually not possible to
obtain a closed-form solution to the resulting integral equa-
tion, so our first objective, that of obtaining a simple but
completely gereral result, cannot be achieved in this manner.
Nevertheless, a closed-form solution can be obtained for one
important case and this is to be examined belew. First, it
will be useful to consider the other alternativ:.

When the flux is treated as a function of c.istance,
evaluation of the integral on the right-hand side of equa-
tion (112) is straightforward and yields an explicit ex-
pression for the concentration. Such a formulation has the
advantage of simplicity, but explains neither how nor why
the flux actually varies under a given set of boundary con-
ditions. However, it does provide a means for establishing
bounds cn the effect of differences in the form of the flux
specification. Specifically, by treatin_ the normal flux as
a function of distance, it is poszible to establish absclute
upper and lower bounds on the shape of the concentration pro-
file.

To establish bounds of this type it is not necessary to
specify the form of Jg(x). It will be assumed, however, *hat
J: is expressgible as an explicit function of x and is every-
where of the same sign as JE. Following notation introduced
above, the shape of the concentration profile may be conven-
iently uaracterized by the parameter T defined by equation
(101). Therefore, replacing C;(x) in equation (101) by its
value in equation (112), the shape of the concentration pro-
file is given by

t
[%i&\:_c‘i} o Tkl 1’-»‘;}
po = G L Jta s T

E[ = (113)
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where

(e
Ix = 5%[%3}"(&)&]@ (114-a)
* = lo (114-D)

Several features of equation (113) should be emphasized.
First, it may be seen thai I(x) is a monotonic function of
x and ie bounded by

I[i‘(éﬂri < ’I(x)! < |1*] (114-c)

Also, since Jg is everywhere of the same sign as Ji, I(x) is
monotonically increasing or dezreasing according as Jz is
negative or positive. From this it follcws that Ei is char-
acteristically positive regardless of the sign of the flux,
that is, without regard to whethner the normal flux is into or
out of the crack.

The bounds we seek are simply the upper and lower limits
of the right-hand side of equation (113). For example, the
lower bound is approached as the integral I* becomes small.
That is,

L)l = ttm (Sl)

X\
i (115)

——
|
——

The lower limit is approached, thereicre, when the flux at
the crack tip is much greater than the flux at any point
along the crack wall. This behavior may be observed piysi-
cally when the composition of the metal at the crack tip is

-gignificantly different from the composition along the crack

wall.
#*
When the integral I Tbeccmes large, or the flux J; be-
comes small, 2 differsnt behavior is observed. The liwit as
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Jg becomes smgll is
e, (& ’
Ly = J(.*-.—O(Ci> == I(’0/1*" (116-2)

The desired upper bound corresponds to the upper bound of
L, defined by equation (116-a). From thc inequality
(114-c) it follows that

Ly = Max(Ly) = I (116-b)

The upper limit is approached when the flux near the mouth
of the crack is much greater then the flux at the crack tip
or other points slong the crack wall. This behavior may be
observed phLysicalliy when the concentration in the crack ap-
proaches its equilibrium value.

Therefore, when the normal flux is everywhere of the
same sign, the shape of the concentration profile lies be-
tween the limite '

Cilo} — C¢ (117)

In addition, the graph of the function Ci(x) is a continuous
curve and hes a slope which is everywhere of the same sign.
Similar limits may be obtained for cracks having other
than a rectangular shape. Such limits provide no detailed
view of the conditious existing in cracks, but they serve
to emphasize that the concentration of a dissolved species
is8 of the same order of magnitude nearly everywhere within
a crack, In addition, these limits and the general form of
charge-transfer kinetic equetions strongly suggest that the
normal flux is likewise, nearly everywhere, of the same
order of magnitude.
An indication of how the concentration actually varies
within the limits described by equation (117) can be obtained
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from the solution of equation (112) using a simple relation
between concentration and flux. First, however, it should
be noted that, for any charge-transfer reaction, the func-
tional relation between normel flux and concentration is
always expressible in the general form

n ~
I = o; — %P (118) -

The coefficients o; and (3; may be functions of the potential
difference across the metal-electrolyte interface and the
concentrations of other dissolved species. The constant p
is typically a positive integer but can be any positive num-
ber. The general solution of equations (112) and (118) is
beyond the scope of the present work. Here it is assumed
that o; and (3; are functions only of the potential differ-
ence across the metal-electrolyte interface. Further, in
order to display a closed-form solution, the constant p is
taken as one. For our purposes then, equation (118) may be
written

I = @l - o) (119)

where

C[% = 0\5/ @

Equation (119) represents a substantial simpiification
of equation (118). Still, it provides an adequate descrip-
tion of a broad class of charge-transfer reactions., In this
class, for example, are many dissolution-precipitation re-
actions. Before continuing, it may be useful to examine a
specific reaction in order to show the relationship between
equation (119) and the ususl kinetic description of charge-
transfer reactions. This will also provide a basis for
evaluating the parameters (; and C;% A metal-ion dissolu-
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tion reaction serves as a good example. Such a rezction may

- be written

{l
2t
+
M

+
S

M (120)

Equation (120) may be viewed as a specialization of
equation (40). For this reaction, the reduced species (M)
is insoluble and the charge-transfer valence is the same as
the charge (z+) on the oxidized species (Mz+, the metal ion).
Letting the subscript i represent the metal ion and follow-
ing the notation of Section IT, the normal flux is

= ?}g‘{zxp[azﬂg] - {%{expﬁ-u-o\)zifo]} (121)

where

e | (121-a)
and

12 = standard exchange current density (amp/cmz)

o = charge-transfer coefficient

) = standard equilibrium concentration (mole/cm3)

¢m = dimensionless potential of the metal

¢, = dimensionliess potential of the electrolyte at the
metal-electrolyte interface

€, = dimensionless standard electrode potential

By convention, the standard conditions are taker with Ci
equal to one mole per liter.

By direct comparison of equation (119) and (121),




=104~
Q S
¢ = oievrl{ze] (122-8)
_ It YC?‘L -(1- o)
G = (Z"—-cyg, ;\-C-‘?- ) (122-b)

The equilibrium concentration, ng, is 2 function of
the dimensionless overpctential. It increases as the ap-
plied potential increases. The slope, (3;, depends on both
the exchange current density and the equilibrium concentra-
tion. It increases as the exchange current density in-
creases and decreases as the equilibrium concentration in-
creases. From a comparison of equations (122-a) and (122-b),
it is clear that the slope, (3, can be written as an explicit
function of the dimensionless overpotential. In many re-
spects such a form is preferable. However, the equation is
written the way it is to emphesize the relationship hetween
the slope and the equilibrium concentration.

When J? in equation (119) is used to express J; and Jg
in equation (112), it may be shown that the concentration is

o o c h()\g\' + zﬁ‘lnh{\ £ .
C-c = E-cply- s fan ] (123)
where
o

N = VS, (124-2)

(b% \
A (124-b)

oy

& = (124-c)

A simpler form may be used when the crack aspeczt ratio
is large.
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o - ™ cosh (M€Y
(Ci—ChH = [C-cil - ==L (125)

For reasons of simplicity, equation (125) will be used
through the remainder of this discussion.
T¢ compare this result with those obtained earlier, it

is agein convenient to use the function (; defined by equa-
tion (101). From equations (101) and (125),

(126)

S cosh(N) — caz!
G = [ cosh(ny ~- |

The behavior described by equation (126) is summarized
in Figure 35. The function EZ is shown for several values '
of the parameter A. When A is less than one, the deviation
from the parabolic profile characteristic of constant flux
boundary conditions is small. An increase of N by one-and-
one-half orders of magnitude results in a concentration
profile which is virtually flat over ninety percent of the
crack length. Only in a regibn close to the mouth of the
crack does the concentration differ significantly from the
value at the crack tip.

The normal flux can be determined from equations (119)
and (125). After introducing 3}, a non-dimensionalized
flux, for later notational convenience, the result is

n .
—e 20sh(AE)

¥ o Je_ cosh(ag)
N mczn-c'fj Cocoob oy (127)

The behavior of the normal flux is summarized in Figure
36. The dimensionless flux, 32, is shown as a function of £
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for the same values of A as those used in Figure 35. When A
is less than one-third, the normal flux is essentially con-
stant over the entire crack length. Increasing )xhy two
orders of magnitude reduces the normal flux to a value close
to zero over most of the crack length. Only in the region
near the mouth of the crack is the flux appreciable. Com-
parison of Figures 35 and 36 shows that the change in the
shape of the concentration profile from parabolic to flat is
agsociated with a change in the distribution of the normal
flux along the length of the crack,

The change from a parabolic to a flat concentration
profile occurs over a relatively narrow range of A values.
The reason for the change is shown in Figure 37. The lower
curve is a graph of the concentration ratio, Qi’ as a func-
tion of A where Qi is defined as the ratio of the concentra-
tion difference between the tip and the mouth of the crack
to the concentration difference at equilibrium. That is,

=[Gl om G L. Teoshin - b
Q= [CP"‘ CiH L coshiN) ] (128)

For small values of A, the concentration ratio, Qi’ increases
as the square of AN. As A approaches one, Qi begins to dev-
iate from the curve for small A values. For values of A
greater than 10, Qi is indepcudent of A and equal to one.
Therefore, che change from a parabolic to a flat concentra-
tion profile cccurs when the concentration in the crack ap-
proaches its equilibrium value.

The practical significance of these results depends on
the range of A values likely to be encountered physically.
An estimate of this range can be constructed from estimates
of the parameters in equation {124-a). However, a more con-
venient form mcy be obtained by replacirng (3 in equation

(124-a) by iis value in equaticn (122-b) and setting the

\
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charge-transfer coefficient equal to one-half. That is,

lea®/

N / b37DNC e (129)

Values of the exchange current density, Ig, are typi-
cally of the order of 10™2 to 1073 amps per square centi-
meter. Ion diffusion coefficients are about 10~° centi-
meters squared per second at room temperature. The equi-
librium concentration may vary over a wide range depending
on the value of the overpotential, J, but the range, 1072
to 10'1 moles per cubic centimeter, appears reasonable. The
crack dimensions may also vary over a wide range. However,
a crack length of one centimeter end a crack aspect ratio of
one hundred are typical. Faraday's constant is about 10+5
coulombs per equivalent. Ion valernces are 211 of the order
of magnitude of one. By corveniion, the standard equilib-
rium concentration is 10"3 moles per cubic centimeter.

Using these values in equation (129), the range of A values
is found to be 10”12 to 10%°.

A very small or very large value of X characterizes a
reaction which is displeced far from equilibrium. Very small
values correspond to large positive overpotentials and thus,
to large positive values of the normal flux, Jg. Very large
values correspond to large negative overpotentials and thus,
to large negative values of J?. For reactions close to equi-
librium, the value of X is typically in the range, 1072 to
10.

The limits, A equal to zero and X equal to infinity,
correspond respectively to positive and negative values of
the normal flux. However, it should be cautioned that the
sign of the flux does not necessarily determine the shape of
the concentration profile. The sign of the flux is deter-
mined by the sign of (Ciq - Cg). That is, the flux is
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poaitive or negative according as the equilibrium concentra-
tion is greater than or less than the concentration in the
bulk electrolyte. On the other hand, the shape of the con-
centration profile depends only on the value of AN. That
value is in turn a function of ng, but it is independent o*
the concentration in the bulk electrolyte.

Taken together, the above results indicate that treat-
ing the normal flux as a constant is an accurate approxima-
tion for a wide range of N values. More precisely, when N
is less than or equal to one, the error introduced by using
a parabolic approximation to Ci is everywhere less than one
percent. In terms of the kinetic parameters of equation
(121), the error in Ei 18 less than one percent when

=N

explii-odzg] > (Efn{%;s.ﬁ) (130)

| | | Sv—

0f the results thus far, two are particularly striking.
The first is the bounds given by equation (117). The second
is the close conformity of the actual concentration profile
to the parabolic approximation over a wide runge of X\ values.
These results suggest that a satisfactory approximation to
the concentration in a crack-like region may be obtained from
an equation of the form of equation (118) or (119), and the
average concentration calculated from equation (108). For
example, assuming that the crack aspect ratio is large and
treating J? a3 a constant, the average concentration, CI,
calculated from equation (108) is
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¢ o= o+ (131-a)
‘ " 3bD

*
Replacing C, in equation (119) by Cy»

' = alet-cl) (131-b)
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Equations (131) constitute a system of two equations in
. : ¥*
two unknowns. Letting J; be the value of J?, which satisfies
equations (121), the solution of this system of equations is

¢ = G o+ 2eE=d) (132-8)
At~ of
po- alesen (132-D)

The procedure is essentially the same when the flux is
given by an equation of the form of equation (128). How-
ever, the system of equations will usually be larger and may
be non-linear.

The agreement between equation (132-a) and the average
concentration from equation (125) is excellent. Equation
(132~a) is assymptotically correct for both small and large
Avalues. The maximum error is about twelve percent at a
value of about four.

- In contrast, equation (132-b) is correct only for small
values of N. Letting 31 be the average value of the normal
flux calculated from equations (119) and (125), the ratio,
(3,/35), is

/T,\ - 2 Vo~
i LT N Mo (133)

1
--——' *—
J&" Ak T4

This flux ratio is shown as a function of A by the upper
curve in Figure 37. For A values less than one the ratio

is essentially one., For larger X values, the ratio increases
with increasing A, so J; underestimates the true average
value by increasingly greater amounts. This occurs because

the true value of the flux always remains aifferert from
zero in & small region near the mouth of the crack. As a
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result, the true value of the average flux aprroaches zero
more slowly with increasing N than does Ji'

Whether the discrepancy between Ji and Ji is significant
is a moot question. Because of the shape of the concentra-
tion profile for large values of A, the averazge flux, 3&,
provides a less accurate mgasure of the reaction r&te in the
crack interior than does Ji‘ On the other hand, Ji provides
a poor estimate of the total mass flux entering or leaving
through the mouth of the crack.

This analysis is consistent with the numerical results
. and places them in a broader perspective. It shows that the
concentration profile is nearly parabolic over a wide range
of conditions. Significant deviations from the parabolic
shape do occur for values of X greater than one, but for
values greater than thirty, the concentration profile is
virtually flat. Orly for A in the range between one and
thirty does the shape of the concentration profile differ
significantly from one of the two limits, so the parameter
A may be used as a quick and simple indicator of the shape
of the concentration profile. Finally, it has been shown
that accurate estimates of the concentration and the flux in
the interior of a crack-like region may be obivained from the
assumption that the normal flux is uniform. The accuracies
of these estimates sre virtuelly independent of the actual
shape of the concentration prorfile.

The numerical results, the bounds summarized by equa-
tion (117), and the one-dimensional analysis presented above,
form a coherent and fairly complete description of the inter-
action between normal flux and concentration in a crack-like
region. The results of the numerical calculations and those
of the one-dimensional analysis provide epecific examples of
how the normal ilux actually varies from point to point along
the crack wall depending on the reaction kinetics, the ap-
plied potential, and the composition of the bulk electrolyte.
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Thes2 results indicate thet the shape of the concentration
nrofile is very nearly parabolic over e wide range of con=-
ditions. In sddition, the results of the one-dimensional
analysis in genersl, and equation (127) in particular, em- i
phasize that when the metal-electrolyte interface is Lomo-
geneous, the normal flux is everywhere of the same sign.
Finally, the results most important to an understanding of
transport in crack-like regions are the bounds summarized

by equation (117). These bounds, together with the fact that
the concentration is a smooth, continuous function of dis-
tance, indicate why the form of the boundary conditione does
not have a strong influence cn the shepe of the concentration
profile. They also provide & theoretical basis for the use
of approximations such as equations (13%2) to estimate the
composition within a crack-like region.

Convective Transport

The numerical work indicated that transport by diffusion

" plays a dominant role in determining the concentration in &

crack-like region. Transport by convection and migration
appeared to have little effect on the results, either at
short times or long times. If this is gererally =ruz, th2
complexity of many electrochemical transport vroti=zms may be
substantially reduced. If not, it may still be possible 1o
generate useful results using a diffusion analysis. In tais
case, however, it will first be necessary to determine the
range over which the effects of migration and convection are
negligible and to estimate bounds or the errors introducel
when they are not.

The results of the las* section indicate that convection
plays a minor role in the case of a hyperbolic crack sub-
Jected to the opening mode of crack deformation. That con-
vective trensport is almost :1lways unimportant may be shown




LT T

-112-

from the une-dimensional transport analysis in Appendix C,
Tonsider firet the opening mcde of crack deformation and,
for simplicity, assume that the crack is rectangular. If
the crack walls move outward with a uriform velocity, WU,
the rectangular region remains rectangular, and the average
longitudinal ve1001ty,2f, is

77 Ua O\

v o=-(%%)e (134)
where

o = b, + wut (135)
and

b, = value of the crack width, b, at time zero (em)

t

tire sec)
£ = dimensiorless distance from the crack tip (x/a)

Note that the average lengitudinal velocity, 7, is a linear
function of distance from the crack tip. The same result is
obtained for the opening mode of defo.aation regardless of
the crack shape.

From equations (C-2 and -4) in Appendix C, the differ-
ential equatics describin, -nveclive transport in 2 rectan-
gular crack is

. N2
oC: * __ — Qz_(:z / Ji o
s¢ Tt v »: §&¢ " \Hp/ T (136)
where
& =Dt (137-a)
= va/n, (137-b)
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As the coefficient &f‘approaches zero, the convective
term approaches zero, and equation {!%6) approaches the
differential equation governing transport by simple diffu-
gion. When &* is greater than zero, omission of the con-
vective term introduces an error. For exemple, when U* is
sne~tert) , the error introduced by neglecting the convective
term is about two percent; when U* is one, the error is
about fifteen peicent. By comparison, the maximum value of
U* in the convective-diffusion problems of the last section
wasg about seven. For that value of 2/, the deviation of the
solution from the solution for simple diffusion was about
twenty-five percent.

At short times, the concentration at the crack tip is
influenced only by conditions existing in a region close to
the tip. But, by equation (134), the velocity there is zero.
Therefore, equation (1%6) reduces to the equation describing
transport by simple diffusion and, at short times, the sol-
vent motion has no effect on the concentration at the crack
tip. This was observed in the results presented in the last
section,

4Lt large times, motion of the solvent a2 fects the con-
centration everywhere within the crack. But, from the def-
initi ~ of 2* and equations (13%4) and (135), it may be shown
that

| .Q:’ ir\ ) »Dt
2 L ) (138)

In particular, for times of the order of the time to reach
tha steady state,

L (139-a)
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o] < (Bgl) <t (139-b) .

Thus, for times of the order of the time to reach the steady
state, the error introduced by neglecting the convsctive
term is less than twenty percent. 'The error may be greater
than this at shorter times, but it is certainly less at
larger times,

Sy
Srver g

For technical alloys, the crack deformation rates which
can be sustained for extended periods of time are limited by
metal fracture. Thus, for problems of practical interest,
the crack deformation rates will be small and the errors
will be less than that corresponding to the absolute upper
bound in equation (13%9-b). In this connection, it should be
emphasized that a /* value of seven was obtained in the nu-

merical calculations only by ignoring changes with time in f
the crack dimensions.

| S !mwﬂn- -

S

For the mode of crack deformation we have called the
crack growth mode, the longitudinal solvent velocity is con-
stant along the length of the crack and the velocity profile
is approximately parabolic at every cross-section. As a re-
sult, the velocity relative to the crack tip is zero, and,
according to the one-dimensional transport analysis, the
governing differential equation reduces to that for trans-
port by simple diffusion. Thus, when the boundary condi-
tions are expressed as functiions of distance from the crack
tip (a meving coordinate), the analysis of problems involving
the growth mode of crack deformation is identical to that for
transport by simple diffusion in a stationary crack.

The above results show that the convective term may be
omitted in almost all problems involving transport in a
crack-like region. For the opening mode of crack deformatic:,
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the error introduced by neglecting the couvective term does
not exceed twenty percent for times greater than (az/Di).
For the growth mode of crack deformation, no error is intro-
duced by neglecting convective transport relative to the
crack tip, since this contribution is in fact zero.

Migration

The results of only one electrochemical transport prob-
lem were presented in the last section. Those results were
consistent with the view that diffusion is the dominant mcde
of ion transport. However, none of the data presented indi-
cates the range over which this observation may be valid.

It is not clear, for example, that the diffusion equation
even constitutes a useful approximation outside the range of
very small current densities.

To evaluate the importance of transport by migration
and to understand the role of the electrostatic potential in
electrochemical transport requires a more detailed analysis.
Once aguin, the one-dimensional transport analysis provides
a suitable framework. It has been possible to obtain a gen-
eral solution to a class of problems which includes the
problem solved numrerically as a special case, A detailed
discussion of this solution is contained in Appendix D,
Because the solution is expressible in closed-form and i=
not too complicated, it is ideally suited to our present
purposes.

It is assumed that the crack is rectangular and the
system is at steady state. Transport is by diffusion and
migration. The electrolyte contains three dissolved species

'with the charge numbers

Z.i = "Zo = Z3 =+ (140)
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Species one and two will be called the salt ions and
species three will be called the product ion. By analogy
with the problem solved numerically, the species one, two,
and three may be associated with the ions Na+, 1™, and gt
respectively. The subscript notation is adopted here both
for convenience and to emphasize that the results are in no
way restricted to a particular electrolyte.

The boundary conditions are similar to those used in
the problem solved numerically. No restriction is imposed
on the normal flux of species three. The normal flux of
speciecs one and two is taken as zero at every point along
the metal-electrolyte interface. In the notation introduced
above,

{..,.q,—,-«

 —1

B =3 = o, (=12 (141)

From equations (D-6, -10, -11, and -12) in Appendix D,
the steady state solution is

|
C; = € U (142) Lr
C. = (C§ + CPUM (143) L
C, = (C3+ SUUM - CHUK (144) |
¢ = Infum)] (145) -

where | L
U = { + 2 R (146) L

1 Fot A . 1

(3(!‘) = 5(6{ C:\:LJ" + b\‘]}(g)d‘g— (147)

1
|
1
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The correctness of this solution may be verified by direct
substitution of equations (142 - 147) into the flux equation
and the electroneutrality equation (eqns. C-4 and -5 in
Appendix C). Note that the dimensionless potential, ¢, has
been set equal to zero at the mouth of the crack (x = a).

This has bsen done for convenience and consistency with the

numerical work, since the absolute value of the potential has
no effect on the results.

Several features of the solution deserve special empha-
sis. The corncentration of species one, the positive salt
ion, is inversely proportional to the function u(x); the
concentration of species two, the negative salt ion, is di-
rectly proportional to u(z). This suggests that the solu-
tion may be unbounded as u(x) approaches either zero or in-
finity. It may also be seen that the diffusion coefficients
of the salt ions do nct appear in the equations. In fact,
the steady state solution never includes the diffusion co-
efficient of a species whose flux is zero.

When the normal flux of species three is constant every-
where along the metal-electrolyte interface,

I o= I, = J:', a constant (148)

and equations (146) and (147) may be written

Jy Y gy
U(Y\) = 1 + Zﬁe(c?+:g)[(a'\\/ J""“{_;(CL.' Y’A‘] (149)
Joor L
aky = HCs + CﬁL 1.1 (150)

When the normal flux of species three is constant, the
current density normal to the metal-electrolyte interface,

In’ is also constant and may be written as
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In = 3l (151-&)
The current density in the longitudinal direction, Ij, is
R
L = 330 [1 + ()] (151-b)

I; is a linear function of distance from the crack tip.
When the crack aspect ratio is large, the current density
at the mouth of the crack may be one or more orders of mag-
nitude greater than In’

From equations (145) and (149), the steady state value
of the potential difference between the tip and the mouth of
the crack, AQ.., is

r n 2
_ . o J\__Ck . r 4 o) }
A¢35 — ‘n 'i t 4« I:-_(C: + C%)Li + .:L/] (152)
For comparison, the initial value of the potential
difference, AQ., is
- 26 .

b = AN I

o o [\Si\DL*Iz + C%(D;\'* L:» (153)

where, in writing equation (153) it is assumed that the
initial compocitisn of the electrolyte is everywhere con-
stant and equal to the composition of the bulk electrolyte.

For simplicity and clarity, we will focus attention on
the special case when J% is counstant. Also, for the example
to be presented, the transport properties, crack dimensions,
and boundary conditiorns will be the came as those used in the
electrochemical transport problem solved numerically. The
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normal current density, In, will be treated as the indepen-
dent variable. This specialization permits a direct compar-
ison with the numerical problem and provides a feel for mag-
nitudes not conveyed when results are presented in dimen-
sionless form.

Thus, the parameters of the solution will have the
following values unless otherwise stated.

a = 0.200 cm

b = 0.020 cm

09 = 0.6 x 1077 mole/cn’

Cg =1.0 x 10~10 mole/cm3 (150)
Dy =1.33 x 107 cm?/sec

D, = 2.00 x 1072 cm?/sec

Dy = 9.00 x 107> em/sec

For the numerical problem, the normal current density,
In’ was 314 microamps per square centimeter (Jg was 3.25 x
10'9 moles per square centimeter per ¢2cond). When In is
assigned this value and the other parameters are evaluated
as shown above, the agreement between this solution and the
numerical solution is excellent. When the appropriate quan-
tities are plotted in Figures 30, 32, 33, and 34, the points
are coincident with those shown for the numerical results,
with one exception. The current density versus distance
curve does not show the deviation from linearity exhibited
by the numerical results.

The behavior of this system over a broad range of cur-
rent densities is summarized in Figures 38, 39, and 40. In
Figure %8, the crack-tip pH (defined here as the negative
common logarithm of Cs, evalnated at x equnl to zero) is
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shown as a function of the normal current density. The con-
centration of species three is calculated from equations
(144) and (149) using the values of the parameters given in
equations (154). The point on the curve corresponding to the
results of the numerical problem is shown by a solid circle.
The rH which would exist in the absence of 2 potential grad-
ient (transport by simple diffusion) is shown by a broken
line.

As the current density increases, the concentration in-
creases and the crack-tip pH decreases. When the current
density is small, the potential gradient ic cmall and the pH
is essentially the same as would »e calculated ignoring the
effects of migration. Here, the two curves are coincident,
As the concentration approaches the value of the salt con-
centration in the bulk electrolyte (pH == 0), the potential
gradient begins to affect the solution and the curves sepa-
rate. At high current densities, the curves become parallel,
At any given current density, the diffusior curve indicates
a pH value 0.301 less than tke true value. Thus, the effect
of migraticn at high current densities is to reduce the pro-
duct ion concentration to a value one-half as large as that
predicted by diffusion alone.

In Figure 39, the crack tip concentrations of all three
ions are shown as functions of the normel current density.
The concentrations are calculated from equations (142),
(143), (144), and (149) using the values of the parameters
in equations (154). The solid points indicate the results
of the numerical problem.

When the current density is small, the concentration
of the product ion is small compared to that of the positive
salt ion. In this range, the concentrations of the salt
ions are insensitive to the applied currert or the presence
of the product ion. The prodnec iom bchavee as thcugh it
carried no charge. As the cu: +i. ¢-rulity increases, the
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concentration of the product ion increases. When it reaches
a value close to that of the salt in the bulk electrolyte,
there are sensible changes in the concentrations of the salt
ions. The electrolyte within the crack becomes enriched in
the negative salt ion and depleted in the positive salt ion.
This trend continues with further increases in the current
density. At very lesrge currents, the crack becomes severely
depleted in the positive salt ion. In this range, the be-
hevior is, for all intents and purposes, the same as in a
binary electrolyte.

The behavior of the electrostatic potential is illus-
trated in Figure 40. The potential differerce between the
tip and the mouth of the crack is shown as a furction of the
applied current density. Two values are shown. The upper
curve is the initial value of the potential difference. It
was constructed using equation (153) and the data in equa-
tions (154). The lower curve is the steady state value. It
was obtained from equation (152), again using the data in
equations (154). The s0lid points indicate the results of
the numerical problem.

When the rormal currernt dersity is small, both values
of the potential are proportional to the applied current,
but the steady state value is about one-fifth of the initial
value. As the current density incresses, the initial value
remains proportional to the current. In contrast, the
steady state value is proportional to the current only with-
in a limited range. Beyond this range, the slope of the
potential-current curve decreases with increasing curreat.
At véry large current dersities the ratio of the steady
state potential to the initial pctential approaches zero.

By compar:con with Figure 39, ii may be seen that the cur-
rent density corresponding to the upper limit of the propor-
tional behavior is the same as that required to raise the
product 101 concentration to the level of the salt concen-
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tration in the bulk electrolyte.

The example above illustrates wost of the important
features of electrochemical transport. It shows the entire
range of behavior of the product ion, from simple diffusion
at low current densities to behavior as one of the ions in
a binary electrolyte at high current densities. It shows
the effects of the electroneutrality requirement by the
changes in the concentrations of the salt ions with changes
in the applied current. Most importantly, it shows how the
electrostatic potential changes with changes in the applied
current. Being a specific example, however, it illustrates
these effects in relation to a specific set of boundary con-
ditions. It does not indicate the range over which the
effects may be observed, nor does it provide a truly satis-
factory basis for understanding them. For this, it is
necessary to return to the solution as expressed by equa-
tions (142 through 145) and equation (149).

Consider first the bchavior of the product ion when the
normal current density is positive. Over mecst of the range
of positive current densities, the product ion behaves in one
of two ways. Depending on the composition of the bulk elec-
trolyte, it may behave at low currert densities as an un-
charged species, obeying the differential equaticn for trans-
port by ordinary diffusion. At sufficiently large current
densities, it always behaves as one species in e binary elec-
trolyte. (This may be shown to hold quite generally, with-
cut regard for the number or charges of the other cnarged
species, as long as each of these species has a zero normal
flux.) The transition from one behavior to the other typi-
cally occurs over a relatively narrow range of curre:t den-
sities,

A11 of this is readily apparent wher equation (144) is
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*

written in the form

ACy = Cyo =3 = B8Cy[L - £3(8Cy)] (155)
where

Jral gaon

%ug == 5”3[‘ b (156-a)
and

- - ot 205

138Gy} = ey + LT XY (156-D)

Comparison of equations (156-a) and (110-a) shows that 803

is just the concentration difference between the tip and the
mouth of the crack that exists when the product species car-
ries no charge. When f(603) is zero, the product ion behaves
as an uncharged species. When it is large, the product ion
behaves as an ion in a binary electrolyte.

From equation (156-b), the function f(SCB) is bounded by
the limits

0 < = [Fam < 4ty T (157)

From these bounds and equation (155), it is clear that the

* For notatioral convenience, equation (144) has been eval-

uated at x equal to zero, the crack tip. For a general

value of x, it is nnrcessary only to replace the right-hand

?ide)of equation (156-a) by the right-hand side of equation
108).
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ectual concentration difference between the tip and the
mouth of the crack is never less than one-half, nor greater
thar one, times the concentiration difference corresponding
to transport by dif.. zion only. It is also apparent that
the product ion can actually behave as an uncharged species
only wken its concentration in the bulk electrolyte is small
with respect to the concentration of the positive salt ion.

The transition from one mode of behavior to the other
occurs within a relatively narrow range. Suppose, for ex-
ample, that Cg is much less then C%. 1In this case, the
erro. introduced by assuming that transport is by diffusion
is less than ten percent when 603 is less than (80?). On
the other hand, treating the electrolyte as a binary intro-
duces less than ten-percent error when 603 is greater than
(160?). S0, the elecirolyte must actuslly be treated as a
ternary system only over a range of about two orders of
magnitude.

The behavior of the salt ions fulicws that of the pro-
duct ior., When f(603) is small with respect to one, their
concentrations are essertially the same as those in the b ik
electrolyte. When f(BCB) is very close to one, the ccucen-
tration of the positive sslt ion is near zero, while the con-
ceniration of the negative salt ion is approximately equal to
that of the product ion. Clearly, then, the value of the
function f(603) completely characterizes the liehavior of the
system when the current density is positive.

When the current density is negative, the behavior is
different .. one important respect. Since negative concen-
trations are not physically allowable, there is a lower limit
to the allowable values of the normal current density. In
the terminology of equetions (155) and (15€), 803 is bounded
from below. The value of this bound is obtained by setting
C3(O) equal tc zero in eguation (155). Thus
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From equations (156-b) and (158), it follows that for
negative velues of the normel current density

0 < [t -VI?(%’] < U8y < {mw < (159)

Comparison of equations (157) and (159) shcws that the func-
tion f(803) is always non-negative and is bounded by the
limits zero and one. It provides the same characterization
of the system and is amenable to the same interpretation at
negative currents as at positive current ensities.

The normal current density corresponding to the limit-
ing value of 603 in cquation (158) is called the limiting
diffusion current density or, simply, the diffusion current
denaity. It may be determined from equations (151-a),
(156-a), and (158). The values of the concentrations and the
electrostatic potential at the crack tip may be obtained from
equations (142 through 145) and equation (149), 2xain, using
the limiting value of 803 from equation (158). The results
are

I, = DA TS (r60ma)
Color = Vopics+ ) (160-b)
C.00 = “,"/r.‘.‘,'( ,?;bg)l (160-c)
Gy = 0 (160-d)
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dor = §in[mits] (160-e)

A

The value of the diffusion current density in equation
(160-a) is consistent with simple dimensional arguments. It
in:>reases as the crack length decreases and as the ion con-
centration in the bulk electrolyte increases. The concentra-
tiong of the salt ions are equal and approach zero as the
salt concentration in the bulk electirolyte approaches zero.
The value of the electrostatic potential, which is equal to
the potential difference between the tip and the mouth of
the ~rack, approaches zero as the concentration of the pro-
duct ion in the bulk electrolyte approaches zero. This is
not surprising since the diffusion current density approaches
zero at the same time. As the concentration of the positive
salt ion approaches zero, the electrostatic potential at the
crack tip approaches minus infinity. The diffusion current
density then approaches a valuc twice as large as the one
corresponding to transport by simple diffusion.

It shov™d be emphasized that the potential difference
between the tip and the mouth of the crack is unbounded only
in the case of a binary electrolyte. The presence in the
bulk electrolyte of a third ion, having the same charge as
the product ion, eliminates the singularity at the crack tip.
However, this ion must be present in relatively large concen-
trations to have a practical effect. For example, when the
concentration of the positive salt ion, C?, in equation
(106-e) is equal to that of the product ion, Cg, the poten-
tial difference correspondiing to the limiting diffusicn cur-
rent density is nine millivolts. When C? is equal to 10’%0%,
the potential difference is 59 millivolts. When C? is egral
to 10‘$C§, the potential difference is 118 millivolts, These
values should be compared to eighteen millivolts, the value
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of the potential difference wlien the normal current density
i3 of the same magnitude, but of the opposite sign as the
diffusion current density in the binary system.

From the definition of conductivity fbllowing equation
(17), it is clear that small changes in composition produce
small chenges in conductivity. The large potential changes
illustrated above suggest, therefore, that the steady state
potential does not satisfy Ohm's law at current densities
close to the diffusion current density.

The same conclusion, over a broad range of current
densities, is suggested by the results shown in Figure 40.
The steady-state potential difference was obtained from the
solution of the governing differential equations, assuming
that the time rates-of-change of the ion concentrations were
small with respect to the other terms in the equations. The
initial value was obtained from the same set of equations,
assuming this time that the electrolyte was homogeneous. As
indicated above, this is equivalent to the requirement that
the current and potential satisfy Ohm's law. While both
aesumpiions are valid in their stated time domains, the Ohm's
law statement does not appear to be valid at steady state.

Since Ohm's law is often used in the solution of elec-
trochemical transport problems, it is worth considering
whether its use is ever justified. First, however, it will
be convenient to rewrite equations (152) and (153) in terms
of the parameter 603 defined by equation (156-a). From
equations (152) and (156-a), the steady-state potential dif-
ference between the tip and the mouth of the crack is

r ~
A@ss = In|{+ R—C?fcgg] (161)

Similarly, from equations (153) and (156-a), the initial
value is
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The ratio of the two values proviles a simple measure
of the agreement between Ohm's law and the actual steady
state potential. For simplicity, we will consider only the
case when Cg is small with respect to C?. In this case, the
bulk electrclyte is for all intents and purposes a binary
salt sclution.

When the current density is small, the logarithm in
equation (161) may be approximated by its second term, and
the ratio of the potential differences is

— 1t
AP, 2Ds (1€3)

The ratio is one when the diffusioun coefficient of the pro-
duct ion is equal to the arithmetic average of the diffusion
coefficients of the salt ions. So, Ohm's law may yield a
satisfactory approximation to the steady state potential
when the diffusion coefficients are all about the same. Al-
though this condition was not satisfied in the example prob-
lem, it often is satisfied for problems not involving either
the hydrogen or the hydroxyl ions.

At high current dersities, the approximation based on
Ohm's law is never correct. It consistently overestimates
the true steady state potential by a significant margin.
This follows directly from equations (161) and (162). The
steady state potential increaseg as the logarithm of the
concentration 803; Ohm's law indicates that it should in-
crease linearly.

While Ohm's law may yield incorrect estimates of the
electrostatic potential, the major objection to its use is
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philosophical rather than practical., Its use carries the
implication that migration is the primary mode of current
transport and that composiiional differences retween the
crack and the bulk electrolyte are negligible. In fact,
one-half or more of the total current is transported by dif-
fusion, and, as has been shown, the compositional differ-
ences this requires are often substantial.

When the ion with the non-zero flux has a negative
charge, it is only necessary to replace u in equation (145)
by (1/u) and assign the opposite signs to the charge num-
bers in equation (140). This changes the sign of the re-
lation between the normal flux and the current density but
hias no other effect. Therefore, the results presented here
apply to eay 1-1-1 electrolyte for which the normal fluxes
of two species are zero. They may be conveniently summa-
rized as follows.

1) When it is assumed that transport is by simple diffu-
sion, the resulting estimate c¢f the product ion concen-
tration is never in error by more than a factor of two.

2) An estimate of the error in the above approximation may
be obtair.ed from the ratio, Rc’ of the calculated con-
centration to the total salt concentration in the bulk
electrolyte. Vnen the ratio is less than one-haif, the
error is less than ten percent. When the ratio is
greater than twenty, the error is between 1.9 and 2.0.
In the latter case, the €lectrolyte essentially behaves
as a binary system, so the binary spproximation will
often be more useful in this range than the simple dif-
fusion analysis.

3) The concentrations of the salt ions follow that of the
product ion. The crack is depleted in the szlt ion
carrying the same charge as the product ion, and concen-
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trated in the salt ion carrying the opposite charge.

4) The potential is described by Ohm's law at times small
with respect to the diffusion time (aZ/Di). The steady
state potential may be approximated using equation (161)
with 803 replaced by its approximate value from the

- diffusion analysis. If the concentration estimate is
corrected as indicated above, the expression for the
potential is exact.

These res:lts ere consistent with those obtained numer-
ically. They indicate that the diffusion equation provides
a good estimate of the concentration of a product species.
When the requirements of electroneutrality are considered,
satisfactory approximations to the salt ion concentrations
may also be obtained.

Recapitulation

When the separate observations and findings of the last
two sections are viewed as a whole, they form a coherent and
fairly complete picture of corrosion and transport in crack-
like regions. They indicate that the average concentration
of an ion which enters into a surface reaction is, to a good
first approximatior, given by

~ N\
- a

/'—-ﬂ
G = \ C" (164)

Thus, the factors which have a primary influence on the com-
position withir a crack-like region are the average values

of the normal ion fluxee, the crack aspect ratic, and the
crack length. Other factcrs, such as the shape of the crack,
the exact form of the boundary conditions, and the transport
mode, can and do affect the composition. In general, however,
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these factors are of lesser importance.

Operationally, the results suggest that first order
approximations to the ion concentrations may be obtained
using a method similar to that described by equations (132).
The accuracy of the resulting estimates may then be deter-
mined by comparing them with the ionic strength of the bulk
electrolyte. For moat problems it will be found that the
electrolyte can be treated either as an ordinary solution or
as a binary electrolyte. That s, either the dissolved
species may be treated as having zero charge and the grad-
ient of the electrostatic potential ignored, or they may be
treated as charged species moving in the electrostatic field
cre..ted by the transpcrt of the two principal ionms.

Clearly, situations will arise for which neither of
these approximations is satisfactory. In such cases, it
will be necessary to use the more sophisticated solution
techniques developed in this work. When two-dimensional
transport effects are known or thought to be important the
numerical method is particularly well-suited. When the
boundary conditions are simple and the time-rate-of-change
of the electrolyte composition is small, the steady state
form of the one-dimensioral transpcrt analysis is preferred.
For problems involving time-dependence or complex boundary
specifications, the numerical techrique is the best of the
existing methods. However, a numerical method based on the
one-dimensional transport analysis would be simpler and more
efficient in the long run.
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VII. COKNCLUDING REMARKS

The work presented here was originally aimed at devel-
oping an analytic framework for the study of stress corro-
sion crackiig. As the work progressed, it became cleer that
it would be necessary first to determine what factors most
strongly affect corrosion and transpcrt processes in cracks.
Only then would it be reasonable to undertake the modeling
of such a complex procecs as crack growth. While the results
do not go beyond that first stage, they do provide a basis
for a discussion of some general aspects of stress corrosion
cracking.

One of the longstanding rules of thumb in stress corro-
sion cracking is 'metals that corrode don't stress corrode’.
Like other such rules, it is not necessarily true, but it
points out that, by and large, alloys susceptible to crack-
ing in a particular environment do not actively corrcde in
thet environment. They tynically have corrosion potentials
in the passive region, a range of potentials within which a
metal-oxide is stable in contact with water.* When there is
an adequate oxygen supply, the oxide ususlly forms by reac-
tion of the metal with dissolved oxygen. When the oxygen
supply is limited, as is probable in a crack or crevice, the
oxide forms either by hydrolysis of metal ions or by direct
reaction of the metal with weater. Regardless of the reaction
path, the formation of a metal-oxide in the absence of free
oxygen is accompanied by the release of hydrogen ions.

If the electrolyte within a crack is depleted in oxygen,
the pH should be in the acid range. Evidence presented in
two recent papers, one by B, F. Brown, C. T. Fujii, and E. P.
Dahlberg [3] and the other by J. A. Smith, M. H. Peterson,

* See the footnote at the bcttom of page 134.
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and B. F. Brown [24], ‘ndicates that this is, in fact, the
case. Their data show thet for cracks in a variety of ma-
terials the pH is in the range between about 1.5 and 3.5.
In general, the data indicate that thie greater the oxide
stability, the lower the measured pH.

These pH measurements may be used with the results of
the last section to obtain some general estimates of the
conditions in stress corrosion cracks. For example, equa~
tion (164) can be used to estimate the normal current den-
sity at the metal-electrolyte interface due to oxide film
growth. Consider a crack 1-millimeter long by 0.01-milli-
meter wide and suppose that the bulk electrolyte is a neu-
tral, 0.6-mole per liter, sodium-chloride solution. Using
9 x 10-5 centimeters squared per second as the value of the
hydrogen ion diffusion coefficient, the average value of the
normal current density is in the range 3 x 10-'7 to 3 x 10"5
amperes per square ceatimeter.

If the rate of f:lm growth changes significantly from
point to point along the crack wall, the average normal
current density is not a good indicator of the local reac-
tion rate. If, as appearc likely, the rate at the crack tip
is much.greater than at points more distant, the current den-
g8ity in that region will be about two crders of magnitude
greater than the average calculated above. Whatever the
case, the current density at the mouth of the crack is in
the range 3 x 10"5 to 3 x 10"3 amperes per square centimeter.

There is little published data regarding iths concentra-
tions of ions other ihan the hydrogen ion. Measurements re-
ported in Reference % indicate the presence of metal ions
but provide no estimates of their concentrations. PFrom the
reported pH velues and the sclubility products of the various
metal hydroxijes, however, it appears that the metal ion con-
centrations are small and that the hydrogen ion is the
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principal product ion.*

As shown in the last section, the importance of migra-
tion may be estimated from the re:io of the product ion con-
centration in the crack to the ionic strength of the bulk
electrolyte. From the measurements reported in Reference 3,
the minimum pH was about 1.5, corresponding to a hydrogen
ion concentration of about 0.03 moles per liter., The ionic
strength of the electrolyte (0.6-mole per liter, sodium-
chloride solution) was about 1.2 moles per liter. The ratio
of the two is forty. Thus, the effects of migration and the
gradient of the electrostatic potential should be negligible
over most of the crack length. It is interesting to note
that in T. R, Beck's original 'MET' analysis [10], the same
result was obtained. A large potential gradient in the re-
gion close to the crack tip was later generated by introduc-
ing a diffvsion-limited chloride ion flux.

The results presented in the last two sections are based
on a planar analysis and are strictly velid only wher trans-
port in the specimem thickness direction is negligible. In
most experimental work no attempt is made to control trans-
port in this direction. A planar analysis should neverthe-
less yield results consistent with experiment when the spec-
imen thickness is large with respect to the crack length.
When the thickness is small, the analysis will fail.

In practice, a planar analysis should be approximately
correct for points closer to the crack tip than about one-
half the specimen width. At points more distant, composition
variations in the specimen thickness direction will be much
greater than those in ie crack length direction. Corrosion

*

The cystem examined in Reference 24 is an exception to
this rule. The metal (AISI 4340 steel) may crack at active
corrosion potentials. Althcugh the crack is acidifie3d by
vhat appears to be a hydrolysis reaction, the hydrclyzed
species is soluble.
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processes on the crack faces will then be little different
from those on the sides of the specimen. Therefore, finite-
width specimens should behave as if the crack length were
constant whenever the crack length is greater than about
one-half the specimen width.

This view is consistent with the outstanding success
obtained in correlating susceptibility to cracking and crack
growth rates with applied stress intensity. For pre-cracked
specimens of a fixed alloy composition, tested under constant
conditions in a given electrolyte, there appears to be a
critical stress intensity, KISCC’ below which cracks do not
propagate. This critical value is independent of the crack
length or the gvecimen configuration [25]. In the last sec~
tion it was sho. 1 that convective transport is signiiicant
only at very high lnading rates. In the usual range of load-
ing rates, the majcr effect of the applied stress on ion
transport is its effect on the crack aspect ratioc. TFor a
pre-crzcked specimen such as that shown in Figure 24, the
crack esspect ratio depends on its value under no load and
the stress intensity. By using a fetigue crack as a starter
notch, the crack aspect ratio at zero load is effectively
standardized, and the aspect ratio becomes a function of the
stress intensity orly. Therefore, if the crack length to
gpecimen width ratio is in the range where the 'effective'
crack length rerains constant, the effect of the stress field
on ion transport is determined by the aprlied stress inten-
sity and the variables describing the crack gecmetry do not
behave as independent variables.

These remarks are not meant to imply that the stress
field has no influence other than its influence on ion trans-
port. The applied stress intensity has a strong infiuenne on
fracture surface morphology and may affect the kinetiecs of
charge-transfer reactiorns, The fact that the stress inton-
sity influences all these factors is one of the more serious




obstacles to determination of the underlying mechanisms of

cracking.

The need for accurate kinetic data has been stressed
throughout this work., Qualitative observations and order of
magnitude estimates such as those presented above provide
some insight into the stress corrosion process. But these
are really not adequate for understanding or controlling
stress corrosion cracking and, if history is a useful guide,
they are just as likely to be wrong as right.

Consider some of the interpretations made of the ob-
served low values of the crack pH. This observation has
been viewed as providing support for at least three differ-
ent mechanisms for crack growtii., While it would be unfair
and misleading to imply thet these proposals are based on no
other experimental data, a low pH is a critical factor in
each of them.

T. P. Hoar [26] hes argued that a low pH inside the
crack is consistent with a metal-dissclutinn mechanism.
Under such circumstances, the rate of oxiue-film formation
should be suppressed and consequently the rate of metal dis-
solution highly favored vrear the crack tip. Others argue
that a low pH should acceleraie the rate of hydrogen ion
discharge un the bere metel surface at the crack tip, and
that fracture mist thir Le the consequence of aydrogen em-
brittlement (see Reference 27). £till others find support
for a film rupture mecherisa, Iere it is argued thet the
low pH confirms the hypothesis thal oxide film growth is the
primary reecticn occurring in cracks. If this is the case,
rupture of the film under apprlied stress may then cause the
crack to propegate a short distance intc the metal until it
again comes to rest and the process repeats itself.

Obviously a low pH value neither corfirms nor refutes
any of these theories. Together with othe. d-ta, the mea-
suremerts reported in Reference 3 do imply that hydrogen
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ions are generated either by the hydrolysis of metal ions or
by oxide film growth. Whether this reaction is even critical
to crack propagation remains to be determined. For many sys-
tems, a low crack pH is expected simply from the exposure of
clean and highly reactive metal surface to an oxygen depleted
electrolyte. When this is the case, a low pH could be the
consequence of crack growth and not the underlying cause of
it.

Regardless of the actual mechanism of crack growth, it
is clear that all require a fine balance between the rates
of several different reactions. For example, if crack prop-
agatior is due to hydrogen embrittlement in a near neutral
electrolyte, there must first be a source of hydrogern ions.
The rate of generation of these iors must be approximately
equal to their rate of discharge on the metal surface. The
rate of hydrogen absorption must be fast with respect to the
rate of formation of molecular hydrogen and its rate of
transport away from the crack tip. Finelly, the rate of
metal dissolution must be slow with respect to the rate of
hydrogen absorption.

Because there is qualitative agreement between the ex-
perimental data and several different failure mechanisms, it
is not possible to determine the actual mechanism in a given
system by a single simple experiment. In order to subject
any of the mechanistic theories of stress corrosion to a
critical test, at least three elements will be required.
First, the mechanism must be cast in a quantitative form.
This will probably require independent evaluation of quali-
tative relationships which have not yet been quantified. In
the case of hydrogen embrittlement, for example, the rela-
tionship between KIC’ the critical stress intensity for rapid
fracture, and the concentration of nccluded hydrogen is re-
quired. Next, accurate and independently measured electro-
chemical kinetic data must be obtained., Using this data,




-138-

the anal&tic techniques presented here may be used to char-

acterize the environment and to determine whether the actual
reaction rates are consistent with the mechanism postulated.
Finally, the quantitative predictions generated in this way

must be subjected to rigorous experimental verification.
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Conclusions

1) A method has been developed for the numerical solution
of the electrochemical transport equations based on
dilute solution theory and subject to an arbitrary set
of charge-transfer boundary conditions. It has been
applied to prcblems involving dependence on time and
two spatial variables.

2) The factors of primary .mportance in determining the
electrolyte composition within a crack-like region are
the average values of the species fluxes normal tc the
s0lid-liquid interface, the crack length, and the crack
aspect ratio. Other factors, such as the crack shape,
the form of the boundary conditions, and the transport
mode can affect the composition. However, these fac-
tors are of lesser importance.

3) When the crack aspect ratio is greater than three and
the elapsed time is greater than the diffusion time
(a2/D), the effects of transport in the transverse

3

crack direction are negligible.

4) The average concentration of an ion within a crack-like
region is given to a good first approximation by equa-
tion (164).

The accuracy of this approximation may be determined
from the ratio of the calculated value to the ionic
strength of the bulk electrolyte.

5)  As shown by equation (164), the electrolyte composition
within a crack may differ substantially from that in




the bulk solution.

6) An accurate representation of reaction kinetice is [
required to determine the detailed behavior of an
electroalyvte within a crack-like region.

7)  Many individual results have been presented which can-
h not be conveniently summarized but have direct appli- !
cation to pitting corrosion, crevice corrosion, and
stress corrosion cracking. i
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1) Por application to stress corrosion cracking, pitting
corrosion and crevice corrosion, a method should be
developed for the numerical solution of the one-dimen-
sional formulation of the transport equations presented
in Appendix C. This should permit improved resolution
in regions with large gradients and result in at least
an order of magnitude reduction in core storage re-
quirements and computation time.

2) The methods and results developed in this study should
be applied to the study of stress corrosion cracking.
Particular emphasis should be placed on the identifi-
cation of allowable reactions in the system under in-
vestigation and on a determination of the kinetics of
these reactions.

3) The many individual results presented here provide
tools for the study of such corrosion phenomena as
pitting, crevice corrosion, and intergranular corrosion.
Application o these results to such corrosicn processes
should be undertaken.




1)

3)

4)

6)

1)

8)

9)

10)

-142-

REFERENCES

A, P. Bond and E. A. Lizlove, "Anodic Polarization
of Austenitic Stainless Steels in Chloride Media,"
Journal of the Electrochemical Society, 115 (11),
1130-1135, (Nov. 1968).

N. D. Greene, W. D. France, Jr., and B. E. Wilde,
"Electrode Mounting for Potentiostatic Anodic Polar-
ization Studies," Corrosion, 21 (9), 275-276,

(Sept. 1965).

B. F. Brown, C. T. Fujii, and E. P. Dahlberg, "Methods
for Studying Solution Chemistry Within Stress Corrosion
Cracks," Journal of the Electrochemical Socievy, 116
(2), 218-219, (Feb. 1969).

J. Newman, "Engineering Design of Electrochemical
Systems," Industrial and Engineering Chemistry, 60
(4), 12-27, (Apr. 1968).

K. J. Vetter, Electroghemical Kinetics: Theoretical

arnd Experimental Aspects, Academic Press Inc., New
York, 51§575.

J. G. Hines, "On the Propagation of Stress-Corrosion
Cracks in Metals," Corrosion Science, 1 (1), 21-48,
(Aug. 1961).

D. A. Vermilyea and C. S. Tedman, Jr., "A Simple Crevice
Corrosion Theory," Journal of the Electrochemical Soci-
ety, 117 (4), 437-440, (Apr. 1970).

Vi, D, France, Jr. and N. D. Greene, Jr., "Pagsivation
of Crevices During Anodic Protection," Corrosion, 24

T. R. Beck, "Stress Corrocion Cracking of Titanium
Alloys IX: An Electrochemicel Mechanism," Journal of
the Electrochemical Society, 115 (9), 890-896,
{Sept. 1968),

T. R. Beck and E. A. Grens II, "An Electrochemical Mass
Transport-Kinetic Model for Stress Corroeion Cracking
of Titanium," Journel of the Electrochemical Society,
116 (2), 177-184, (Feb. 1969).

| g

v

S,

o

e e g pvy ™3




'Y

sy

———

~,

| o
i

s
[S——)

o

oL
Ao,

ooty

11)

12)

13)

14)

15)

16)

17)

20)

21}

~143~

R. C. Alkire, E. A. Grens II, and C. W. Tobias, "A Theory
for Porous Electrodes Undergoing Structural Changes by
Ancdic Disso’ution," Journal of the Electrochemical Soci-
ety, 116 (i0), 1328-1333, (Oct. 1969).

J. Newman, "Transport Processes in Electrolytic Solu-
tions," Advances in Electrochemistry and Electrochem-

ical Engineering, Vol. 5, C. W. Tobias, Editor,
Interscierce PﬁElishers, New York, (1967), 87-135.

W. M. Latimer, The Oxidation States of the Elements
and Their Potentials in Aqueous Solutions, 2nd Ed.,
Prentice-Hall Iuc., New York, (1952).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in

Solids, 2nd Ed., Oxford University Press, London,
(1959).

r

<. Crank, The Matl.ematics of Ditrusion, Oxford Univer-
sity Press, London, (19%6).

K. B. Prater and A. J. Bard, "Rotating Ring - Disk
Blectrodes I: Fundamentals nf the Digital Simulation
Approack. Disk and Ring Transients and Collectinn
Efficiencies," Journal of th: Electrochemical Society,
117 (2), 207-213, (Feb. 1970C).

J. Dcuglas, Jr., "A Survey of Numerical Methods for
Parabolic Differential Equatiors," Advances in Com-
puters, Vol. 2, A. D. Booth and R. E. Meagher, Edi-
tors, Academic Press Inc., New York, (1961), 1-54,

M. Pourbeix, Atlas of Electrochemical Equilibria,
Pergamor Press Inc., New York, (1966).

H. A, Johansen, G. B. Adams, Jr., and P. Van Ryssel-
berghe, "Anodiec Cxidation of Aluminum, Chromium, haf-
nium, Niobium, Tantalum, Titanium, Vanadium, and Zir-
conium at Very Low Current Densities," Journal of the
Electrochemical Society, 104 (6), 339-346, (June 1957).

G. Milazzo, Electrochemistry: Theoretical Princirles
and Practical Applications, Elsevier ?ﬁblishing Co.,
New York, (1963).

R. Parsons, Handbock of Electrochemical Constants,
Butterworth Publiceatione Ltd., London, (1999).

Handbook of Chemistry and Fhysics, 51st Ed., R. C,
Weaet, Editor, Chemical Rutber Co., Cleveland, (197C).




ks
l
ey

-144-

23) A. A. Griffith, "Stresses in a Plate Bounded .by a
Hyperbolic Cylinder," Reports and Memoranda No. 1152
(M.55.), Aeronautical Research Committee, H. M. Sta-
tionery Office, London, (Jan. 1928).

24) J. A. Smith, M. H. Peterson, and B. F. Brown, "Electro-
chemical Conditions at the Tip of an Advancing Stress
Corrosion Crack in AISI 4340 Steel," Corrosion, 26 (12),
539-542, (Dec. 1970).

25) C. D. Beachem and B. F. Brown, "A Comparison of Three
Precracked Specimens for Evaluating the Susceptibility
{ of High-Strength Steel to Stress Corrosion Cracking,"

Stress Corrosion Testing, ASTM STP-425, American Soci-
ety for Testing and Materials, Philadelphia, (1967).
31-40.

=t =1 Py M N o B

i 26) T. P. Hoar, "Stress-Corrosion Cracking," Corrosion,
, 19 (10), 331t-338t, (Oct. 1963).

27) P. R. Rhodes, "Mechanism of Chloride Stress Corrosion
Cracking of Austenitic Stainless Steels," Corroeion,
25 (11), 462-472, (Nov. 1969).

SN

e

M

| guay

=

— /=

R N e e W




aes ane OGesd St e G e D O BSDOBES o= B Bt deed Bl R BB R

~145-
APPENDIX A

Finite-Difference Analogue for the Ion Conservation Equation

A key element in the numerical solution »f the electro-
chemical transport equations is the method used to soive the
ion conservation equation, equation (73) on page 38. In the
notation of equations (77), the equation may be written

Ce ’ — .
W %’f = ZDYCHH + DYC; — Vo Sorl () + HPGy (A-1)

In the computer program developed for this study, equa-
tion (A-1) is solved using an Alternating-Direction Implicit
(ADI) technique. The term ADI describes a general concept
or approach rather than a particular algorithm. It may be
applied to any algorithm using a computational sequence in
which the equations are first made implicit in one coordin-
ate direction and then in another., Such methods have the
advantages of unconditional stability and computational
speed. This appendix is included to show how this concept
has been applied to the solution of equation (A-1;.

Let
SO0y = §ojae, <AT, At (a-2)

where £ is any function of the coordinates ¢, % and t. Then
by analogy with differential operators, we may define the
following difference operators

[T
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Aefikod) = 288 [ {(jrik ) = etk 0] (A-3)
L v,

AR = TGk D) = Skt 2] (A-4)
{ r

BeSG) = 2a| et = 28000 + § 1k, 0] (A-5)

B = 28 ke = 280,00 ¢ Sk, 0] (4-6)

. --L ! 'R .
At%(ka)l\ == [\,t[g(j,i(,i,\' - %(l'k)l-i)] (A-7)

The central-difference operators defined by equations

(A-3 through A-6) are second-oruier correct. That is, the
errcr introduced by using the difference operator to approxé
imate the analogous differential operastor is proportional to
Agz(or A??). The backward-difference operator defined by
equation (A~7) is first-order correct.

The finite- .ifference analogue to equation (A-1) is
written as two equations. 1In the first, derivatives of
concentration in the {-direction are¢ approximated at (1+%]At,
wnile those in the 7-direciion are approximated at IAt. 1In
the second, the sequence is reversed and the calculation is
advanced anoiier halt time-step. Derivatives of concentra-
tion in the Y?-direction are approximated at (f+{)At and de-
rivatives in the £-direction are approximated at 1+ 4)At,
There are several ways to treat the products of the deriva-
tives of C; and ¢h In the present version of the program,

these are approximated at ({+3)At .
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The difference equations are
| )(ﬁjkmitcg.k 2+h) = DaEClk LAY + DRCLHLKA (4-8)

- Agc jkl* ) Ay q’(],k) + A?C(l‘/ A) Asq’(( k)

}(2(g,k)A;_tC(j\k,i+n = DO ) + DG ) (4-9)
SR S T PSRN chaj.k,i.nm‘q,k\ |
sl el + W60 K, 1)
where
(zs)q(j.k.ﬂe-}_‘, = Clh U8 D ) + 853707 (4-10)
+ Ok B[R ks 4 B AGR 0]
SO + Atk D b0 X, )

+ ur(‘(j X, l*“m '\ + \7C i A"i)A?@(j,k,R"J)
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‘ ‘_r . B
GGkave) = ZIGGK R + Gk, ALY, (A-11)

Note that in writing equations (A-8 through A-11) the species
subscript { has been omitted and the stream function has been
written as a time invariant quantity. This was done for sim-
plicity. Values of the functions q and G at the advanced |
time are obtained by iteration as explained in the text.

The net effect of alternately applying equations (A-8)
and (A-9) can be seen from the sum of the two equations.

LRAL: ; . . :
“at O = 0K = DR+ ST CHK )+ A5 C ik, Re1)]

O IRRERT RIS (A-12)
+41L,CHNE T AClk 1] At

+ (k4 + WOGGK, Ry

The term on the left-hand side is Jjust the central dif-
ference approximation for the partial time derivative of C
at time ({+%)at. It is analogous to equations (A-3) and
(A-4) and may be shown to be second-order correct. There-
fore, equation (A-12) is second-order correct in both time
and space when 0 and & are correctly evaluated at time
(£+4)at. When the functions o, and G are evaluated at time
{at, the equation remains second-order correct in space but
is reduced to first-order correctness in time.
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APPENDIX B
Reaction Kinetics

Before the techniques developed here can be applied in
the study of a particular system, one must first decide what
reactidns are relevant to the behavior of that system, and
then obtain quantitative expressions for the rates of those
reactions. For example, having determined that a redox re-
action of the form of equation (40) is important, one must
decide whether an equation of the form of equation (59) is
suitable for expressing its reaction kinetics. If so, the
parameters IZ and o must be evaluated. If not, another ex-
pression must be found and its parameters evaiuated. The
same thing applies to the other reactions in the system.

For the work presented here, it was decided to select
a simple system of reactions which would exhibit a fairly
wide range of behavior without being excessively complicated.
It was also desired that the system of reactions be one for
which some, if not all, of the kinetic constants could be
evaluated from published data.

A system of reactions modeled after the oxide-film
formation reactions in the titanium-water system met these
requirements. A key factor in this choice was that the
oxides of titanium have an extremely low electronic conduc-
tivity. Virtually all of the current passing through the
film must be transported by ions or vacancies rather than by
electrons. In the limit of zero electronic conductivity, no
redox reaction can occur on an oxide-covered metal surface,
since the electrons generated cannot pass through the film.
In this case, the only allcwable reactions are oxide film
growth by ion or vacancy migration through the film, and
ion-exchange reactions at the oxide-electrolyte interface.
By further limiting the ion-exchange reactions to a single
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dissolution-precipitation reaction, a relatively simple
system of reasctions is obtained which nevertheless retains
some physical relevance.

The reactions considered, therefore, may be written

M+ 2H,0 = MO, + 4HY + 4e” (B-1)

MO, + 2H = Mo%* + H,0 (B-2)

Reaction (B-1) may be viewed as an overall reaction
consisting of three steps.

M(metal) = M4+(oxide) + 4e” [11] (B-3a)

migration of ions or vacancies [11] (B-3Db)
through oxide film

2[B0 = 0%~ (oxide) + 2H'(elect)] [21,] (B-3c)

Steps (B-3a) and (B-3c¢c) are charge-transfer reactions. Step
(B~-3b) is a transport requirement imposed by the finite
thickness of the oxide film. The current density correspond-
ing to each step is shown in brackets for later reference.
If no other reaction occurs, stoichiometry of the oxide re-
quires that the current density 12 be one-half I1.

Reaction (B-2) may be viewed as consisting of two
partial reactions.

M02+(oxide) = M02+(elect) (1 (B-4a)
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02~ (oxide) + 2H (elect) = H,0 [-1,] (B-4b)

Reactions (B-4) are both charge~transfer reactions occurring
at the oxide-electrolyte interface. Reactions (B-4b) and
(B-3c) are identical but are written in the opposite direc-
tiorns. Again the current density corresponding to each re-
action is shown in brackets. When reaction (B-2) is the
only reaction, stoichiometry of the oxide requires that 12
equal minus I3.

The overall system of two reactions consists of three
partial reactions., Thre requirement of stoichiometry may be
written as

L-L-L =0 (B-5)

To obtain a complete description of the reaction kinet-
ics it is necessary to express the current densities, I1,
Iz, and I3, as functions of concentration and potential.
Following Vetter [5] it is assumed that reaction (B-3a) is
near equilibrium and transient transport effects in the
oxide film are ignored. The current density I1 may then be
expressed using the high field conduction equation. The
current densities are

I, = I} {exp{%(cpm—dx-er-vsﬂ - erpf %(q).q-rbs-er-‘;g\]} (B-6)

ol 1. wme )

I, = Iz{tz;p[zc«'zg] ‘GHC;I,@XPL'K‘J'M?'-]}‘ (B-7)
y t3a _"z

I = Bferolzan - %Tffu.{o.xpt-z(i-on?ﬁ” (3-8)
Tile | )
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Equations (B-5 through B-8) provide the complete ki-
netic description of reactions (B-1) and (B-2). Because
the solution of these equations for 7 is lengthy and in-
volved and a parametric analysis of the equations indicated
that 13 is small over a wide range of pH and potential, it
was decided to treat reaction (B-2) as being close to equi-
librium. Equation (99) in the text is the result of this
assumption. A simple algorithm for obtaining %, from this
system of equations has since been developed, so a simpli-
fying assumption of the kind used here need not be invoked
in future work.

Once 7 has been determined, the ion fluxes and oxide-
film growth-rate may be expressed as

JiHen = - Ly (B-92)
Jpotrn = = /23 (B-9b)
'6 = W(II"Z]-S)""A‘pe‘ (B-QC)
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APPENDIX C
Electrochemical Trangport in a Crack-Like Region

When the aspect ratio of a notch or crack is large, the
effects of transport in the transverse direction can be ne-
glected and the region treated as a one-dimensional contin-~
uum. The equations deécribing transport in such a region
are developed in this appendix and the solutions for two im-
portant cases are presented. A solution technique based on
developing an integral equation foir the electrostatic poten-
tial is also discussed. An example of the use of this tech-
nique is presented in Appendix D.

Consider a region in the x-y plane bounded by the
x-axis and the line y = f(x) as shown in Figure 41. The
region corresponds to one-half the section of a crack pro-
duced by a cutting-plane perpendicular to both the crack
plane and the crack front. The x-axis coincides with the
crack centerline; the line y = f(x) coincides with one crack
face. The region is assumed to be symmetric about the crack
centerline so the second crack face corresponds to the line
y =-f(x). For the control volume shown in Figure 41, the
equation of mass conservation may be written

{ - | + - n e —
J‘I" yLoat Jllx Ly Ot & ,xm ASM =
teest e Q.‘t Lerob

(C-1)
- C

[ci

Af‘[ . .
iX*thx ]A\'iﬁgyx\- 3(10AX]
L+t

Taking the limit of equation (C~1) as ax and At approach
zero, the differential form of the mass conservation equa-
tion is

|
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$(dw) - Jed o+ 4§ = 0 | (C-2)

where

ot b e

% = ‘\/ i_"+ (%LE)“” (C-2a)

When the mouth of the crack is located at x equal to a, and
b is the crack half-width measured at the crack mouth,

y = b, e 0 (c-3a)

for a rectangular crack and
: o T b\Y
y = 8N, ds = /i + (8) (c-3b)

for a pie-shaped crack. Note that the fluxes Ji and J? in
equation {C-2) are flux densities and not total fluxes.
Also, the quantities appearing in the equation correspond
to average values across the crack width,

To complete the description, the flux equation and the
electroneutrality equatioiu are required.

0 — DY + U (C-4)

Ji o =00 oF

;Z[C@ = ) (0'5)

When the average solvent velocity, 2, has been deterwined,
equations (C-2, -4, and -5) represent the complete system
of equations describing mass transport in a crack-like
region.
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When the line y = f(x) is the generator of a surface of
revolution about the x-axis rather than a sheet, the enclosed
region is pit-like rather than crack-like. Using the same
procedure as that used to obtain equation (C-2), the conser-
vation equaticn for such a region is

&Iw) - 28y + & = 0 (C-6)

When equation (C-6) is used instead of equation (C-2), the
results are modified in detail but not in principie. There-
fore, it will not be considered further.

At steady state, integration of the conservation equa-
tion is straightforward. Since the boundary conditions typi-
cally require specifying the flux at the crack tip and the
concentration at the crack mouth, it is convenient to express
the result as

b
-

G+ \J,-“(c;\ e s ] BN (%))
P

: i
Gy T L,}‘

where the crack tip is lccated at x equal tc p and the prime
denotes differentiation with resvect to the argument of a
funetion.

As indicated in the text, there are two important limits
to the behavior of an electrolyte. The first is when the
total normal current density is small. The ions then behave
as uncharged species obeying the equation of transport by
simple diffusion. The second is when the current density is
large. The concentrations of the two principal ions closely
approximate thcese cof the icns in a binary electrolyte. The
potential gradient is determined by the need to satisfy both
the boundary conditions of the principal iong and the elec-
troneutrality equation. Th: concentrations of the minor
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ionic species are strongly affected by the potential gradient
but they themselves have virtually no effect on it.

Consider the case of steady-state transport by simple
diffusion. From equations (C-4) and (C-7) with ¢’ and ¥’
equal to zero

- Ip;

I
1

c!
or

Cc = C + &Si(ﬁﬁd‘; (c-8)
where

y i ,
) = J‘.’Dz = Dy [U)(P‘ Jitp) + \Jzn@ ) d@] (c-9)
()

The solution is almost as simple for the case of steady-
state transport in a binary e. ctrolyte. From equations
(C-4) and (C-7) with ¥ equal to zero

/ / N
2o + G = -y (c-10a)

/

v /
2,69 + o -Rw (C-10b)

where f, c¢nd f, are defined according to equation (c-9).
Adding equations (C-10) and using the electroneutrality
equation to eliminate both the electrostatic potential and
02, it follows that

RS N
C = -(:z“_‘ji)[x,(x) + Sl(x‘.-]
or

N q N SN o e

= /= =
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C;, = C + (=% )\

) e el (e-11)

The concentration 02 may be obtained from equation (C-11)
by simply interchanging the subscripts one and two.

When the normal flux of one of the two species, say
species two, is everywhere zero, it follows from equation
(C-9) that f£, is also zero. Since the ith diffusion co-
efficient enters the result only through fi’ it is clear
that the solution docs not depend on the diffusion coeffi-
clent of a species with zero flux. Comparing equations
(C-8) and (C-11) with f, equal to zero, it may be seen that

el LA —
Cy - Cyem Fo ) (C-12)

o= Cion = ¥o%

L0 £ D &3 ovd o 0 0

:...._q
a2

For the problem presented in the text this ratio was one-
half. It will typically lie between one-quarter and three-

| ——

quarters,

The electrostatic potential may be obtained from equa-
tions (C-10a) and (C-11). However, we will use a different
method in order to shew how an integral representation may
be used to solve rertain electrochemical transport problems.

Consider a steady state system for which the solvent
velocity is zero. From equations (C-4, -7, and -9), the

% - differential equation governing ion transport may be written
: in the form
0 &
lcexplzd)] = - Sexp!®d) (C-13)

Integrating,

ame ewm
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a

c = Jo + &%‘-(g»:xp[zzcb@]def,o,xp[-zf(b(x)] (C-14)

X

where, for convenience, ¢(a) has been set equal to zero.
Note that, as before, the kernel §; contains all the in-
formation regarding the normal flux and the crack shepe.
When the potential,<b, is everywhere zero, equation (C—8)
is recovered. When § is known or otherwise specified, as
for a minor ionic species in a nzar--binary electrolyte,
equation (C-14) expresses the solution and no additional
information is required.

In general, the electrostatic potential is not known
and the electroneutrality equation must be used. Thus, from
equations (C-5) and (C-14),

2

E;Zz{c? * \?:@em.'zeq\i%‘ﬂd%}ZX;: 2Pw] = o (c-15)

Every steady-state one-dimensional electrochemical
tranéport problem iz reducible to the problem of finding a
value of () that satisfies equation (C-15). In practice,
there are two ways to do this. The first is direct numeri-
cal solution of the integral equation. The necond is,
through repeated differentiation, to derive an equivalent
differential eyuation. It may be possible to solve this
equation analytically. Otherwise, it can be solved numeri-
cally.

The derivation of an equivalent differential equation
is straightfcrward but laborious. For example, in the case
of a binary electrolyte, equation (Z-15) may be written

a

n:\ A
7,03 4 ropulerE :’.i\il(g‘:uae.‘z‘d.g O EECLN Leueide = 0

*x

(C-16)
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where

U = expldx)] (C-17)

Differentiating once and rearranging,

A

(E +1) ‘
U b LEE0 4 (R \Letde = 0
14 )

- [Ztrh ~zg$z
(Cc-18)

Differentiating agein and rearranging yields the desired
differential equation.

/
[ a0 )+ maln ) = 0 (C-19)

Integration of equation (C-19) is straightforward.
After evaluating the constants of integration using equa-
tions (C-17) and (C-18), it follows that

a.
d) = !nT! — (‘:\ L~1ga(’ * Zzsz(‘i'}l.‘d%_._._
J

-1 e /\o \' " (0-20)
) 2T o) VL4 + Smian)
3

The correctness'of this result may be verified by com-
parison with the result obtained directly from equations
(C-10a) and (C-11). The labor involved does not justify
using equation (C-15) for a binary system. TFor more com-
plex electrolytes, however, there is no other straightforward
method for solving the steady-state transport equations, and
a method based on the solution of equation (C--15) is neces-
sary whether it is recognizable as such or not.
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APPENDIX D
Electrochemical Transport in a 1-1-1 Ternary Electrolyte

Determination of the implicit function(ﬁ defined by
equation (C-15) in Appendix C is the key step in solving
one-dimensional steady-state electrochemical transport prob-
lems., Since the equation is non-linear, it usually is im-
possible to obtain a solution in closed-form and approximate
methods must be used. In several cases, however, closed-
form solutions can be displayed and one of these is presented
ir this appendix.

Consider a 1-1-1 ternary electrolyte for which the nor-
mal flux of one species is everywhere zero. In the termi-
nology of Appendix C

2= -, = 7, == +{ (D-1a)
and
o = o (D-1b)

With these values, equation (C-i5) can be written in
the form

a
( 260

0,2 < ~ . . - —
Cﬁ - CLU - U & U(’)Jt + ug + \:34@_)“(5),-.1('_) = 0 (D-Z)

where u(x) is defined according to equation (C-17). Differ-
entiating once and rearranging

i S(é\
[L-%) = 26 - 2) g = 0 (0-3)
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Differentiating and rearranging again, the desired differ-
ential equation is obtained.

(G- Y]+ [n+s] = 0 (0-4)
By the definition of u(x) and equation (D-3),

U = exp[dp@] = t (D-5a)
Ulay == ZCE/(%Z@—%(oJ)' (D-5b)

Therefore, integrating equation (D-4) twice and using equa-
tions (D-5), it follows that

qa.
(8) ~ EJ&: €
b = I - [5:0 - %]de (D-6)
lacg + \lezm + Sy0]dY)
X

*

The ion concentrations may be determined from equation
(D-6) and equation (C-14). For example, for species two

a
Co = [+ \hierexpl-dede] expl ol (5-7)
X

Mo carry out the integration, it is convenient to define a
new variable. Note that equation (D-6) may be written in
the form
o
[ 50+ i) - 2hmlar,

o =\ :
(2t + |l + Sy}

b




a

&« {1 ag\ e+ Lol ~ Yo (D-8)
X
where
§‘ {
Yo = \or g 2EOES (D-9)
] +%£[§z<7»+%m]dv}
X

Using equations (D-8) and (D-9), equation (D-7) becomes

C, = C;{i - Xexp{‘}’ie)] %zdd 2upl-Plexp[d+ 9]

or

nQ

Cz Cg{i + zigg \5 [ o€ + &(e,\]dg} (D-10)
X

Since f1(x) was assumeé to be zero,

Cy = Clavpl-Hm] (D-11)

and by electroneutrality

C’: = Cz w Cl (D"12)

Equations (D-6, -10, -11, and -12) express the general
solution for a 1-1-1 ternary electrolyte for which one of the
positively charged species has zero normal flux. Note that
for a 1-1-1 ternary containing two negatively charged ions
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and one positively charged i.n and for which one of the
negative ions has zero normal flux, the same solution is

obtained except that O is the negative of the value given
by equetion (D-6). Also, the signs of the charge numbers
must then be taken opposite to those shown in equation
(D-1a).
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Change with time in tlre ratio of the longitudinal to the
trarsverse concentretion gradiernl at three pecinte in a
rectargular crack (trencport by eimple diffusion).
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Fig. 15 Dependerce on crack length of the steady-state

creck-tip rH for C.02-centineter-wids byper-
belic erecks  (transport by simple diffusicn).
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Fig. 21 Variation of the crack-tip pH and cxide-film thickress
with time for a hyperbclic crack with cherge-transfer
boundary conditions  (transport by simple diffusion).
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Fig. 23 Convection in a pie-shaped crack.
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FOR A DETAILED VIEW OF THIS REGION
SEE THE HYPERBOLIC CRACK IN
FIGURE 6

Fig. 24 Double edge-notched plate tersior cpecimen used
to investigate the effects of solvent convection,
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CRACK-TIP CONCENTRATION (MOL./LTR.)

TIME TO REACH WIDTH BELOW WITH
€=1.0x10"4 (SEC.)
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Fig, 28 TLep:nderce on crack width c¢f the cteady-ctate
crack-1ip concentraticn fer C(C.20-centimeter-long
hrpertclic cracks (transport by simple diffusion).
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Fig, 41 Crecj domaiy a

controa Volupge for
& one—dimensional transport

analysis.




